A growing number of studies indicate the potential involvement of various populations of bone marrow-derived stem cells (BMSCs) in tissue repair. However, the mobilization of BMSCs to the peripheral blood (PB) in acute and chronic pancreatitis (AP and CP) has not been investigated. A total of 78 patients were assigned into AP, CP, and healthy control groups in this study. Using flow cytometry, we found that VSELs, EPCs, and CD133SCs were mobilized to the PB of patients with both AP and CP. Interestingly, AP and CP patients exhibited lower absolute number of circulating MSCs in the PB compared to healthy individuals. SC mobilization to the PB was more evident in patients with AP than CP and in patients with moderate/severe AP than mild AP. Using ELISA, we found a significantly increased HGF concentration in the PB of patients with AP and SDF1 in the PB of patients with CP. We noted a significant positive correlation between SDF1 concentration and the mobilized population of CD133SCs in AP and between C5a and the mobilized population of VSELs moderate/severe AP. Thus, bone marrow-derived SCs may play a role in the regeneration of pancreatic tissue in both AP and CP, and mobilization of VSELs to the PB depends on the severity of AP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9286984PMC
http://dx.doi.org/10.1155/2022/5395248DOI Listing

Publication Analysis

Top Keywords

stem cells
8
patients
8
bone marrow-derived
8
mobilized population
8
evidence stem
4
mobilization
4
cells mobilization
4
mobilization blood
4
blood patients
4
patients pancreatitis
4

Similar Publications

Acute myeloid leukemia (AML) is an aggressive disease with a high relapse rate. In this study, we map the metabolic profile of CD34(CD38) AML cells and the extracellular vesicle signatures in circulation from AML patients at diagnosis. CD34 AML cells display high antioxidant glutathione levels and enhanced mitochondrial functionality, both associated with poor clinical outcomes.

View Article and Find Full Text PDF

Mid-infrared photoacoustic microscopy can capture biochemical information without staining. However, the long mid-infrared optical wavelengths make the spatial resolution of photoacoustic microscopy significantly poorer than that of conventional confocal fluorescence microscopy. Here, we demonstrate an explainable deep learning-based unsupervised inter-domain transformation of low-resolution unlabeled mid-infrared photoacoustic microscopy images into confocal-like virtually fluorescence-stained high-resolution images.

View Article and Find Full Text PDF

Recently, RNA velocity has driven a paradigmatic change in single-cell RNA sequencing (scRNA-seq) studies, allowing the reconstruction and prediction of directed trajectories in cell differentiation and state transitions. Most existing methods of dynamic modeling use ordinary differential equations (ODE) for individual genes without applying multivariate approaches. However, this modeling strategy inadequately captures the intrinsically stochastic nature of transcriptional dynamics governed by a cell-specific latent time across multiple genes, potentially leading to erroneous results.

View Article and Find Full Text PDF

Epidemic Zika virus strains from the Asian lineage induce an attenuated fetal brain pathogenicity.

Nat Commun

December 2024

KU Leuven Department of Microbiology, Immunology and Transplantation, Virology, Antiviral Drug & Vaccine Research Group, Rega Institute for Medical Research, Leuven, Belgium.

The 2015-2016 Zika virus (ZIKV) outbreak in the Americas revealed the ability of ZIKV from the Asian lineage to cause birth defects, generically called congenital Zika syndrome (CZS). Notwithstanding the long circulation history of Asian ZIKV, no ZIKV-associated CZS cases were reported prior to the outbreaks in French Polynesia (2013) and Brazil (2015). Whether the sudden emergence of CZS resulted from an evolutionary event of Asian ZIKV has remained unclear.

View Article and Find Full Text PDF

The cis-regulatory elements encoded in an mRNA determine its stability and translational output. While there has been a considerable effort to understand the factors driving mRNA stability, the regulatory frameworks governing translational control remain more elusive. We have developed a novel massively parallel reporter assay (MPRA) to measure mRNA translation, named Nascent Peptide Translating Ribosome Affinity Purification (NaP-TRAP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!