Background: In this study, we examined the anti-diabetic activity of standardised extracts of (Hemsley) A Gray () leaves for their effects on insulin resistance and mitochondrial DNA (mtDNA) copy number.
Methods: leaves were extracted using an ultrasound-assisted method and standardised using Tagitinin C. There were six groups: i) normal control; ii) diabetic group; iii) metformin group (300 mg/kg) and iv) groups treated with three different doses of extract (50 mg/kg, 100 mg/kg and 150 mg/kg). Blood samples were taken before and after 28 days of treatment for fasting plasma glucose (FPG) and insulin analysis, which were used for a Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) calculation. The soleus and gastrocnemius muscles were harvested after 28 days of treatment for the measurement of mtDNA copy number.
Results: The results showed an improvement in blood glucose levels and HOMA-IR scores in all treatment groups. The results of mtDNA copy number analysis also revealed significant improvement with the highest number observed at an extract dose of 100 mg/kg in which the mtDNA copy number increased up to 3 times in the soleus muscles ( < 0.001).
Conclusion: extract has the potential to be used as an anti-diabetic agent that improves insulin resistance, possibly by increasing mtDNA content.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249416 | PMC |
http://dx.doi.org/10.21315/mjms2022.29.3.5 | DOI Listing |
Alzheimers Dement
December 2024
University of Kansas Medical Center, Kansas City, KS, USA.
Background: Mitochondrial dysfunction is an early and prominent feature of Alzheimer's disease (AD). We have recently published that lower brain mitochondrial DNA copy number (mtDNAcn) is associated with increased risk of AD neuropathological change and reduced cognitive performance. Here, we addressed how mtDNAcn affects cell-type specific phenotypes.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
King's College London, London, London, United Kingdom.
Background: Diabetes increases the risk of Alzheimer's disease (AD), and mitochondrial dysfunction is implicated in both diseases. We previously detected mitochondrial DNA copy number (MtDNA-CN) changes in human parietal cortex that differed between diabetic AD and non-diabetic AD. We hypothesize that MtDNA-CN changes may be indicative of different underlying mechanisms.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2-E2, Yamada-Oka, Suita, Osaka, 565-0871, Japan.
Esophageal cancer is a highly aggressive disease, and acquired resistance to chemotherapy remains a significant hurdle in its treatment. mtDNA, crucial for cellular energy production, is prone to mutations at a higher rate than nuclear DNA. These mutations can accumulate and disrupt cellular function; however, mtDNA mutations induced by chemotherapy in esophageal cancer remain unexplored.
View Article and Find Full Text PDFFront Cell Dev Biol
December 2024
A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
Mitochondria are semi-autonomous organelles containing their own DNA (mtDNA), which is replicated independently of nuclear DNA (nDNA). While cell cycle arrest halts nDNA replication, mtDNA replication continues. In , flow cytometry enables semi-quantitative estimation of mtDNA levels by measuring the difference in signals between cells lacking mtDNA and those containing mtDNA.
View Article and Find Full Text PDFNat Sci Sleep
December 2024
Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.
Purpose: Sleep apnea (SA), associated with absent neural output, is characterised by recurrent episodes of hypoxemia and repeated arousals during sleep, resulting in decreased sleep quality and various health complications. Mitochondrial DNA copy number (mtDNA-CN), an easily accessible biomarker in blood, reflects mitochondrial function. However, the causal relationship between mtDNA-CN and SA remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!