Targeting Autophagy in Thyroid Cancer: EMT, Apoptosis, and Cancer Stem Cells.

Front Cell Dev Biol

Vontz Center for Molecular Studies, Department of Cancer Biology, The University of Cincinnati, Cincinnati, OH, United States.

Published: June 2022

Autophagy is a highly conserved recycling process through which cellular homeostasis is achieved and maintained. With respect to cancer biology, autophagy acts as a double-edged sword supporting tumor cells during times of metabolic and therapeutic stress, while also inhibiting tumor development by promoting genomic stability. Accumulating evidence suggests that autophagy plays a role in thyroid cancer, acting to promote tumor cell viability and metastatic disease through maintenance of cancer stem cells (CSCs), supporting epithelial-to-mesenchymal transition (EMT), and preventing tumor cell death. Intriguingly, well-differentiated thyroid cancer is more prevalent in women as compared to men, though the underlying molecular biology driving this disparity has not yet been elucidated. Several studies have demonstrated that autophagy inhibitors may augment the anti-cancer effects of known thyroid cancer therapies. Autophagy modulation has become an attractive target for improving outcomes in thyroid cancer. This review aims to provide a comprehensive picture of the current knowledge regarding the role of autophagy in thyroid cancer, focusing on the potential mechanism(s) through which inhibition of autophagy may enhance cancer therapy and outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9277179PMC
http://dx.doi.org/10.3389/fcell.2022.821855DOI Listing

Publication Analysis

Top Keywords

thyroid cancer
24
cancer
10
autophagy thyroid
8
cancer stem
8
stem cells
8
tumor cell
8
autophagy
7
thyroid
6
targeting autophagy
4
cancer emt
4

Similar Publications

Tamoxifen (TAM) is employed to treat premenopausal ER-positive breast cancer patients, but TAM resistance is the main reason affecting its efficacy. Thus, addressing TAM resistance is crucial for improving therapeutic outcomes. This study explored the potential role of Tinagl1, a secreted extracellular matrix protein, whose expression is compromised in TAM-resistant MCF-7 breast cancer cells (MCF-7R).

View Article and Find Full Text PDF

Introduction/objective: Plants and their bioactive compounds play a crucial role in the pharmaceutical industry for treating cancer. To date, the cytotoxic and antiproliferative effects of Hypericum perforatum methanol extract on human thyroid cancer cell lines have not been thoroughly explored. The present study aimed to assess the potential anti-cancer effects of HPME on human thyroid cancer and investigate its potential therapeutic benefits.

View Article and Find Full Text PDF

Background: Morphine, a mu-opioid receptor (MOR) agonist commonly utilized in clinical settings alongside chemotherapy to manage chronic pain in cancer patients, has exhibited contradictory effects on cancer, displaying specificity toward certain cancer types and doses.

Objective: The aim of this study was to conduct a systematic assessment and comparison of the impacts of morphine on three distinct cancer models in a preclinical setting.

Methods: Viability and apoptosis assays were conducted on a panel of cancer cell lines following treatment with morphine, chemotherapy drugs alone, or their combination.

View Article and Find Full Text PDF

BACKGROUND The thyroglossal duct cyst, which develops from the midline migratory tract between the foramen cecum and the anatomic location of the thyroid, is the most prevalent congenital abnormality of the neck, accounting for about 70% of all cervical neck masses in children and 7% in adults. Only up to 1% of these abnormalities contain malignant thyroid tissue, with 90% of those cases being papillary thyroid carcinoma. Thyroglossal duct cyst is rarely linked to carcinoma.

View Article and Find Full Text PDF

Thyroid orbitopathy.

Radiol Bras

December 2024

Radiologist at the Instituto do Câncer do Estado de São Paulo (ICESP) and for the Grupo Dasa, São Paulo, SP, Brazil. Email:

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!