A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

DILI : An AI-Based Classifier to Search for Drug-Induced Liver Injury Literature. | LitMetric

Drug-induced liver injury (DILI) is a class of adverse drug reactions (ADR) that causes problems in both clinical and research settings. It is the most frequent cause of acute liver failure in the majority of Western countries and is a major cause of attrition of novel drug candidates. Manual trawling of the literature is the main route of deriving information on DILI from research studies. This makes it an inefficient process prone to human error. Therefore, an automatized AI model capable of retrieving DILI-related articles from the huge ocean of literature could be invaluable for the drug discovery community. In this study, we built an artificial intelligence (AI) model combining the power of natural language processing (NLP) and machine learning (ML) to address this problem. This model uses NLP to filter out meaningless text (e.g., stop words) and uses customized functions to extract relevant keywords such as singleton, pair, and triplet. These keywords are processed by an apriori pattern mining algorithm to extract relevant patterns which are used to estimate initial weightings for a ML classifier. Along with pattern importance and frequency, an FDA-approved drug list mentioning DILI adds extra confidence in classification. The combined power of these methods builds a DILI classifier (DILI ), with 94.91% cross-validation and 94.14% external validation accuracy. To make DILI as accessible as possible, including to researchers without coding experience, an R Shiny app capable of classifying single or multiple entries for DILI is developed to enhance ease of user experience and made available at https://researchmind.co.uk/diliclassifier/. Additionally, a GitHub link (https://github.com/sanjaysinghrathi/DILI-Classifier) for app source code and ISMB extended video talk (https://www.youtube.com/watch?v=j305yIVi_f8) are available as supplementary materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9277181PMC
http://dx.doi.org/10.3389/fgene.2022.867946DOI Listing

Publication Analysis

Top Keywords

dili
8
drug-induced liver
8
liver injury
8
extract relevant
8
dili ai-based
4
ai-based classifier
4
classifier search
4
search drug-induced
4
injury literature
4
literature drug-induced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!