AI Article Synopsis

  • This research examines how image texture analysis (radiomics) from FDG-PET/CT scans can reveal tumor characteristics that may help predict survival outcomes in patients with untreated diffuse large B-cell lymphoma (DLBCL).
  • A random forest model that incorporates quantitative image texture features and clinical risk factors was created and tested against the conventional international prognostic index (IPI) to improve predictions on patient survival.
  • The findings suggest that combining PET-derived texture analysis with traditional clinical factors can better identify high-risk patient groups, leading to more accurate predictions of progression-free and overall survival rates than using IPI alone.

Article Abstract

Image texture analysis (radiomics) uses radiographic images to quantify characteristics that may identify tumour heterogeneity and associated patient outcomes. Using fluoro-deoxy-glucose positron emission tomography/computed tomography (FDG-PET/CT)-derived data, including quantitative metrics, image texture analysis and other clinical risk factors, we aimed to develop a prognostic model that predicts survival in patients with previously untreated diffuse large B-cell lymphoma (DLBCL) from GOYA (NCT01287741). Image texture features and clinical risk factors were combined into a random forest model and compared with the international prognostic index (IPI) for DLBCL based on progression-free survival (PFS) and overall survival (OS) predictions. Baseline FDG-PET scans were available for 1263 patients, 832 patients of these were cell-of-origin (COO)-evaluable. Patients were stratified by IPI or radiomics features plus clinical risk factors into low-, intermediate- and high-risk groups. The random forest model with COO subgroups identified a clearer high-risk population (45% 2-year PFS [95% confidence interval (CI) 40%-52%]; 65% 2-year OS [95% CI 59%-71%]) than the IPI (58% 2-year PFS [95% CI 50%-67%]; 69% 2-year OS [95% CI 62%-77%]). This study confirms that standard clinical risk factors can be combined with PET-derived image texture features to provide an improved prognostic model predicting survival in untreated DLBCL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9175666PMC
http://dx.doi.org/10.1002/jha2.421DOI Listing

Publication Analysis

Top Keywords

image texture
20
clinical risk
20
risk factors
20
prognostic model
12
metrics image
8
texture analysis
8
texture features
8
features clinical
8
factors combined
8
random forest
8

Similar Publications

Healthy eating habits may protect adolescents against disease development, ensure optimal physical and cognitive development, and may persist in adulthood. However, adolescents usually prefer sweetened dairy products and show a low consumption of vegetables, fruits, whole grains, and pulses. Co-creation offers an innovative and inclusive alternative for the development of new products.

View Article and Find Full Text PDF

Mitochondria undergo dynamic morphological changes depending on cellular cues, stress, genetic factors, or disease. The structural complexity and disease-relevance of mitochondria have stimulated efforts to generate image analysis tools for describing mitochondrial morphology for therapeutic development. Using high-content analysis, we measured multiple morphological parameters and employed unbiased feature clustering to identify the most robust pair of texture metrics that described mitochondrial state.

View Article and Find Full Text PDF

Introduction: Crocin-I, a water-soluble carotenoid pigment, is an important coloring constituent in gardenia fruit. It has wide application in various industries such as food, medicine, chemical industry, and so on. So the content of crocin-I plays a key role in evaluating the quality of gardenia.

View Article and Find Full Text PDF

Our study aims to assess the robustness of myocardial radiomic texture features (RTF) to segmentation variability and variations across scanners with different field strengths, addressing concerns about reliability in clinical practices. We conducted a retrospective analysis on 45 pairs of CMR T1 maps from 15 healthy volunteers using 1.5 T and 3 T Siemens scanners.

View Article and Find Full Text PDF

A salience map is a topographic map that has inputs at each x,y location from many different feature maps and summarizes the combined salience of all those inputs as a real number, salience, which is represented in the map. Of the more than 1 million Google references to salience maps, nearly all use the map for computing the relative priority of visual image components for subsequent processing. We observe that salience processing is an instance of substance-invariant processing, analogous to household measuring cups, weight scales, and measuring tapes, all of which make single-number substance-invariant measurements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!