Considerable expansion of shrubs across the Arctic tundra has been observed in recent decades. These shrubs are thought to have a warming effect on permafrost by increasing snowpack thermal insulation, thereby limiting winter cooling and accelerating thaw. Here, we use ground temperature observations and heat transfer simulations to show that low shrubs can actually cool the ground in winter by providing a thermal bridge through the snowpack. Observations from unmanipulated herb tundra and shrub tundra sites on Bylot Island in the Canadian high Arctic reveal a 1.21 °C cooling effect between November and February. This is despite a snowpack that is twice as insulating in shrubs. The thermal bridging effect is reversed in spring when shrub branches absorb solar radiation and transfer heat to the ground. The overall thermal effect is likely to depend on snow and shrub characteristics and terrain aspect. The inclusion of these thermal bridging processes into climate models may have an important impact on projected greenhouse gas emissions by permafrost.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279148 | PMC |
http://dx.doi.org/10.1038/s41561-022-00979-2 | DOI Listing |
New Phytol
January 2025
Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam, 14476, Germany.
Temperature is a critical environmental factor affecting nearly all plant processes, including growth, development, and yield. Yet, despite decades of research, we lack the ability to predict plant performance at different temperatures, limiting the development of climate-resilient crops. Further, there is a pressing need to bridge the gap between the prediction of physiological and molecular traits to improve our understanding and manipulation of plant temperature responses.
View Article and Find Full Text PDFNew Phytol
January 2025
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91011, USA.
A new proliferation of optical instruments that can be attached to towers over or within ecosystems, or 'proximal' remote sensing, enables a comprehensive characterization of terrestrial ecosystem structure, function, and fluxes of energy, water, and carbon. Proximal remote sensing can bridge the gap between individual plants, site-level eddy-covariance fluxes, and airborne and spaceborne remote sensing by providing continuous data at a high-spatiotemporal resolution. Here, we review recent advances in proximal remote sensing for improving our mechanistic understanding of plant and ecosystem processes, model development, and validation of current and upcoming satellite missions.
View Article and Find Full Text PDFEntropy (Basel)
January 2025
Department of Physics and Fujian Provincial Key Laboratory of Low Dimensional Condensed Matter Physics, Xiamen University, Xiamen 361005, China.
We show that the theory of quantum statistical mechanics is a special model in the framework of the quantum probability theory developed by mathematicians, by extending the characteristic function in the classical probability theory to the quantum probability theory. As dynamical variables of a quantum system must respect certain commutation relations, we take the group generated by a Lie algebra constructed with these commutation relations as the bridge, so that the classical characteristic function defined in a Euclidean space is transformed to a normalized, non-negative definite function defined in this group. Indeed, on the quantum side, this group-theoretical characteristic function is equivalent to the density matrix; hence, it can be adopted to represent the state of a quantum ensemble.
View Article and Find Full Text PDFJ Food Sci
January 2025
Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.
Oats are a rich source of plant-based proteins owing to their nutritional value, diverse functions, and high abundance. However, traditional methods for extracting oat proteins (OPs), such as alkali solution acid precipitation (ASAP), can cause environmental pollution and potentially protein denaturation. In this work, we studied the use of deep eutectic solvents (DESs) and deep eutectic system (DESys)-based methods for OP extraction.
View Article and Find Full Text PDFFood Chem
January 2025
School of Biology, Food and Environment, Hefei University, Hefei 230601, China; Key Laboratory of Berry Processing and Resource Comprehensive Utilization, Hefei University, Hefei 230601, China. Electronic address:
In this study, blueberry pomace polysaccharide (BPP) gels were constructed using calcium ions (Ca) induction. The effects of different Ca concentrations on the relaxation time, texture, water holding capacity, thermal stability, rheological behaviour and micromorphology of Ca-BPP gels were evaluated. The Ca concentration required for optimum gel performance was 15 mmol/L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!