Aiming at the problem of logistic division based on genetic algorithm, it is planned to study the improvement of logistic distribution methods. We first meet the requirements of the genetic algorithm of logistic development, use the division method to divide the delivery area of the gene, and formulate a functional delivery plan, which generally includes weight measurement, measurement time, customer value measurement, instrument measurement time, and the whole process index. We set weight goals and find the best way to improve genetic algorithm delivery. The experimental comparison results show that the optimal method takes less than 2 minutes to find the optimal method, while the normal process takes 4 minutes to find the optimal method, and the longest can reach 5 minutes. The comparison shows that the traditional algorithm takes longer to find the correct way than the algorithm developed this time. Finally, the simple logistic distribution optimization method model and the soft time-limited logistic distribution processing optimization model are calculated and simulated by the genetic testing algorithm and genetic algorithm development. The effectiveness of the improved genetic algorithm in local research and the effectiveness of the logistic transportation allocation solution are determined.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279064 | PMC |
http://dx.doi.org/10.1155/2022/8468438 | DOI Listing |
Sci Rep
January 2025
Department of Electrical Electronical Engineering, Yaşar University, Bornova, İzmir, Turkey.
We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China.
Exploring the potential of advanced artificial intelligence technology in predicting microsatellite instability (MSI) and Ki-67 expression of endometrial cancer (EC) is highly significant. This study aimed to develop a novel hybrid radiomics approach integrating multiparametric magnetic resonance imaging (MRI), deep learning, and multichannel image analysis for predicting MSI and Ki-67 status. A retrospective study included 156 EC patients who were subsequently categorized into MSI and Ki-67 groups.
View Article and Find Full Text PDFJ Prev Alzheimers Dis
February 2025
Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA. Electronic address:
Background: Protein abundance levels, sensitive to both physiological changes and external interventions, are useful for assessing the Alzheimer's disease (AD) risk and treatment efficacy. However, identifying proteomic prognostic markers for AD is challenging by their high dimensionality and inherent correlations.
Methods: Our study analyzed 1128 plasma proteins, measured by the SOMAscan platform, from 858 participants 55 years and older (mean age 63 years, 52.
Hum Immunol
January 2025
The Second Affiliated Hospital of Guangxi Medical University, Department of Nephrology, Nanning, Guangxi 530021, China. Electronic address:
Background: Microscopic polyangiitis (MPA) is a severe multisystem autoimmune disease featured by small-vessel vasculitis with few or no immune complex, also has a significant genetic predisposition. Growing evidence has confirmed that STAT4 gene is tightly associated with multiple autoimmune diseases, but its contribution to MPA onset is still elusive.
Objective: The aim was to investigated the association between STAT4 gene polymorphisms (rs7572482, rs7574865 and rs12991409) and MPA susceptibility in a Guangxi population of China.
Forensic Sci Int Genet
January 2025
National Bioforensic Analysis Center, National Biodefense Analysis and Countermeasures Center, Operated by Battelle National Biodefense Institute for the US. Department of Homeland Security Science and Technology Directorate, 8300 Research Plaza, Fort Detrick, MD 21702, USA. Electronic address:
The generation of forensic DNA profiles consisting of single nucleotide polymorphisms (SNPs) is now being facilitated by wider adoption of next-generation sequencing (NGS) methods in casework laboratories. At the same time, and in part because of this advance, there is an intense focus on the generation of SNP profiles from evidentiary specimens for so-called forensic or investigative genetic genealogy (FGG or IGG) applications. However, FGG methods are constrained by the algorithms for genealogical database searches, which were designed for use with single-source profiles, and the fact that many forensic samples are mixtures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!