Seed Priming With Melatonin Promotes Seed Germination and Seedling Growth of L. Under PEG-6000 Induced Drought Stress.

Front Plant Sci

State Key Laboratory of North China Crop Improvement and Regulation/State Key Laboratory of Cotton Biology (Hebei Base)/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, China.

Published: June 2022

Melatonin (N-acetyl-5-methoxytryptamine, MT) can mitigate abotic stress, including drought stress on a number of crops. However, it is unclear whether and how seed priming with melatonin alleviates the effects of drought stress on seed germination and seedling growth of triticale ( L.). In this study, we investigated the effects of seed priming with MT on seed germination, protective enzyme activity, superoxide anion, and hydrogen peroxide in triticale under PEG-6000 induced drought stress. Seed priming with 20 μM MT alleviated the adverse effects of PEG-6000 induced drought stress on seed germination and seedling growth. Triticale seeds primed with 20 μM MT exhibited improved germination potential, germination rate, germ and radicle length. Specifically, MT priming increased the germination rate by 57.67% compared with unprimed seeds. Seed priming with melatonin also alleviated the adverse effects of PEG-6000 induced drought stress on triticale seedlings. MT pretreatment with 20 μM significantly increased the net photosynthetic rate, transpiration rate, stomatal conductance, plant height, leaf area, and relative chlorophyll concentration, enhanced the activities of superoxide dismutase and peroxidase, and decreased reactive oxygen species (ROS) and malonaldehyde content in the seeds (germ and radicle) and seedlings (leaf and root). Collectively, these results suggest that seed priming with melatonin promotes ROS scavenging capacity and enhances energy supply and antioxidant enzyme activities to alleviate the adverse effects of drought stress in triticale.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9280350PMC
http://dx.doi.org/10.3389/fpls.2022.932912DOI Listing

Publication Analysis

Top Keywords

drought stress
28
seed priming
24
priming melatonin
16
seed germination
16
peg-6000 induced
16
induced drought
16
germination seedling
12
seedling growth
12
stress seed
12
adverse effects
12

Similar Publications

Unveiling the role of OsSAP17: Enhancing plant resistance to drought and salt.

Plant Physiol Biochem

December 2024

College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Monitoring for Heavy Metal Pollutants, Ministry of Ecology and Environment, Hunan, 410019, China. Electronic address:

With the intensification of climate change coupled with the inadequate agricultural management in certain regions, plants face numerous challenges due to various abiotic stresses. Stress associated proteins (SAPs) are essential functional genes in plants for coping with stress. This research provides a functional analysis of OsSAP17, a protein belonging to the SAP family in rice.

View Article and Find Full Text PDF

Bacillus subtilis is known to promote root growth and improve plant physiology, while organic compost enhances soil water retention. This study explored the combined effect of inoculating B. subtilis in organic compost on soybean growth under water deficit.

View Article and Find Full Text PDF

The lactic acid bacterial (LAB) species have proven multifaceted roles in sustainable agriculture due to their biologically safe nature, making them eco-friendly. However, their plant growth-improving mechanisms in stressed and non-stressed conditions are still under consideration. Thus, the current work has been planned to evaluate the drought tolerance potential and plant growth-promoting (PGP) traits of Loigolactobacillus coryniformis BCH-4 in Zea mays L.

View Article and Find Full Text PDF

Drought stress has become one of the biggest concerns in threating the growth and yield of carrots ( L.). Recent studies have shed light on the physiological and molecular metabolisms in response to drought in the carrot plant; however, tissue-specific responses and regulations are still not fully understood.

View Article and Find Full Text PDF

C.A. Meyer is a perennial herb that is used worldwide for a number of medical purposes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!