The repeatome is composed of diverse families of repetitive DNA that keep signatures on the historical events that shaped the evolution of their hosting species. The cold seasonal Loliinae subtribe includes worldwide distributed taxa, some of which are the most important forage and lawn species (fescues and ray-grasses). The Loliinae are prone to hybridization and polyploidization. It has been observed a striking two-fold difference in genome size between the broad-leaved (BL) and fine-leaved (FL) Loliinae diploids and a general trend of genome reduction of some high polyploids. We have used genome skimming data to uncover the composition, abundance, and potential phylogenetic signal of repetitive elements across 47 representatives of the main Loliinae lineages. Independent and comparative analyses of repetitive sequences and of 5S rDNA loci were performed for all taxa under study and for four evolutionary Loliinae groups [Loliinae, Broad-leaved (BL), Fine-leaved (FL), and Schedonorus lineages]. Our data showed that the proportion of the genome covered by the repeatome in the Loliinae species was relatively high (average ∼ 51.8%), ranging from high percentages in some diploids (68.7%) to low percentages in some high-polyploids (30.7%), and that changes in their genome sizes were likely caused by gains or losses in their repeat elements. Ty3-gypsy Retand and Ty1-copia Angela retrotransposons were the most frequent repeat families in the Loliinae although the relatively more conservative Angela repeats presented the highest correlation of repeat content with genome size variation and the highest phylogenetic signal of the whole repeatome. By contrast, Athila retrotransposons presented evidence of recent proliferations almost exclusively in the clade. The repeatome evolutionary networks showed an overall topological congruence with the nuclear 35S rDNA phylogeny and a geographic-based structure for some lineages. The evolution of the Loliinae repeatome suggests a plausible scenario of recurrent allopolyploidizations followed by diploidizations that generated the large genome sizes of BL diploids as well as large genomic rearrangements in highly hybridogenous lineages that caused massive repeatome and genome contractions in the Schedonorus and Aulaxyper polyploids. Our study has contributed to disentangling the impact of the repeatome dynamics on the genome diversification and evolution of the Loliinae grasses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284676 | PMC |
http://dx.doi.org/10.3389/fpls.2022.901733 | DOI Listing |
Virol J
January 2025
Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
Background: Vibrio parahaemolyticus is a marine bacterium causing seafood-associated gastrointestinal illness in humans and acute hepatopancreatic necrosis disease (AHPND) in shrimp. Bacteriophages have emerged as promising biocontrol agents against V. parahaemolyticus.
View Article and Find Full Text PDFSci Data
January 2025
Western Research Institute, CAAS, Changji, Xinjiang, 831100, China.
We assembled a chromosome-level genome of Chinese native 'Wanfeng' almond, with a size of 288.53 Mb and a contig N50 of 30.48 Mb.
View Article and Find Full Text PDFMol Phylogenet Evol
January 2025
Museum of Nature Hamburg - Zoology, Leibniz Institute for the Analysis of Biodiversity Change (LIB) and University Hamburg, Martin-Luther-King-Platz 3 20146 Hamburg, Germany. Electronic address:
Priapulida is a small phylum of 22 described species that are divided into two size classes (microscopic and macroscopic), distinguished by adult and larval morphology. Most priapulidans are rare or live in inaccessible habitats, and freshly collected material for molecular studies is difficult to obtain. With this study, we for the first time aim to resolve the phylogeny of extant Priapulida using transcriptomic, genomic, and morphological data.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Department of Biological Sciences, Midnapore City College, Midnapore, West Bengal. Electronic address:
Aeromonas hydrophila is a major aquatic habitat pathogen responsible for huge economic losses in the aquaculture and food industries. In this study, a lytic bacteriophage AHPMCC11 was isolated by using A. hydrophila MTCC 1739.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
College of Agronomy, Hunan Agricultural University, Changsha 410128, China.
Seed color is a critical quality trait in numerous plant species. In oilseed crops, including rapeseed and mustard, yellow seeds are distinguished by their significantly higher oil content and faster germination rates compared to black or brown counterparts. Despite the agronomic significance of the yellow seeds being a prime breeding target, the mechanisms underlying elevated oil content remain obscure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!