A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An Analysis Based on Japonica Rice Root Characteristics and Crop Growth Under the Interaction of Irrigation and Nitrogen Methods. | LitMetric

Water shortages and nitrogen (N) fertilizer overuse limit japonica rice production in Northeastern China. The interactions between water-saving irrigation and nitrogen management on rice root and shoot growth is still our research focus. Here, japonica rice (DN425) was subjected to the irrigation methods W1 (flooding irrigation), W2 [mild alternate wetting and drying irrigation (AWD); -10 kPa], W3 (severe AWD; -30 kPa), and different N fertilizer ratios were applied in different growth stages, namely, N1 (6:3:1:0), N2 (5:3:1:1), and N3 (4:3:2:1). From jointing to full heading stages, the highest photosynthate production capacity and root activity were obtained under W1N2. AWD markedly affected the root system and resulted in root senescence at later growth stages. Grain yield and N utilization efficiency were closely and positively correlated with the relative water content, crop growth rate (CGR), leaf area duration (LAD), the increase rate of root length density, root surface area density, and root volume density (RVD) from the jointing to full heading stages. This positive correlation was also observed in the increased rate of root bleeding sap (RBS) under W1N2 and CGR under W2N3. From full heading to maturity stages, N2 could promote root growth, LAD, and CGR under AWD to a greater extent than those under the other treatments. Water use efficiency (WUE) and N uptake efficiency (NUpE) were both negatively associated with the decreased rate of RVD, root dry weight (RDW), and RBS. They were closely and positively correlated with the increased rate of RDW and CGR. Our results suggested that W2N2 treatment delayed root senescence, maintained leaf photosynthesis, optimized the crop growth rate from full heading to maturity stages, and improved grain yield. The optimal grain yield, WUE, and NUpE were achieved at the irrigation water amount and topdressing fertilizer ratio of 41.40-50.34 × 10 and 31.20-34.83 kg ha, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9277566PMC
http://dx.doi.org/10.3389/fpls.2022.890983DOI Listing

Publication Analysis

Top Keywords

full heading
16
japonica rice
12
root
12
crop growth
12
grain yield
12
rice root
8
irrigation nitrogen
8
growth stages
8
jointing full
8
heading stages
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!