Kernel size is an important agronomic trait for grain yield in maize. The purpose of this study was to validate a major quantitative trait locus (QTL), , which was identified in the F and F populations from a cross between the maize inbred lines SG5/SG7 and to predict candidate genes for kernel width (KW) in maize. A major QTL, , was mapped in multiple environments in our previous study. To validate and fine map , near-isogenic lines (NILs) with 469 individuals were developed by continuous backcrossing between SG5 as the donor parent and SG7 as the recurrent parent. Marker-assisted selection was conducted from the BCF generation with simple sequence repeat (SSR) markers near . A secondary linkage map with four markers, PLK12, PLK13, PLK15, and PLK17, was developed and used for mapping the locus. Finally, was mapped between the PLK12 and PLK13 intervals, with a distance of 2.23 cM to PLK12 and 0.04 cM to PLK13, a confidence interval of 5.3 cM and a phenotypic contribution rate of 23.8%. The QTL mapping result obtained was further validated by using selected overlapping recombinant chromosomes on the target segment of maize chromosome 3. Transcriptome analysis showed that a total of 12 out of 45 protein-coding genes differentially expressed between the two parents were detected in the identified physical interval by blasting with the Zea_Mays_B73 v4 genome. GRMZM2G083176 encodes the Niemann-Pick disease type C, and GRMZM2G081719 encodes the nitrate transporter 1 (NRT1) protein. The two genes GRMZM2G083176 and GRMZM2G081719 were predicted to be candidate genes of Reverse transcription-polymerase chain reaction (RT-qPCR) validation was conducted, and the results provide further proof of the two candidate genes most likely responsible for . The work will not only help to understand the genetic mechanisms of KW in maize but also lay a foundation for further cloning of promising loci.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9280665 | PMC |
http://dx.doi.org/10.3389/fpls.2022.935654 | DOI Listing |
J Clin Exp Hepatol
December 2024
Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt.
Background: Liver fibrosis is a serious global health issue, but current treatment options are limited due to a lack of approved therapies capable of preventing or reversing established fibrosis.
Aim: This study investigated the antifibrotic effects of a synthetic peptide derived from α-lactalbumin in a mouse model of thioacetamide (TAA)-induced liver fibrosis.
Methods: analyses were conducted to assess the physicochemical properties, pharmacophore features, and docking interactions of the peptide.
J Inflamm Res
January 2025
Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
Purpose: Necrotizing fasciitis (NF) is a scarce but potentially life-threatening infection. However, no research has reported the cellular heterogeneity in patients with NF. We aim to investigate the change of cells from deep fascia in response to NF by single-cell RNA-seq.
View Article and Find Full Text PDFVan der Woude syndrome (VWS) is an autosomal dominant disorder characterized by lower lip pits and orofacial clefts (OFCs). With a prevalence of approximately 1 in 35,000 live births, it is the most common form of syndromic clefting and may account for ~2% of all OFCs. The majority of VWS is attributed to genetic variants in IRF6 (~70%) or GRHL3 (~5%), leaving up to 25% of individuals with VWS without a molecular diagnosis.
View Article and Find Full Text PDFHortic Res
January 2025
College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China.
DNA methylation is a stable epigenetic mark that plays a crucial role in plant life processes. However, the specific functions of DNA methylation in grape berry development remain largely unknown. In this study, we performed whole-genome bisulfite sequencing on 'Kyoho' grape and its early-ripening bud mutant 'Fengzao' at different developmental stages.
View Article and Find Full Text PDFWorld J Stem Cells
January 2025
Department of Orthopedic Surgery, Yeungnam University College of Medicine, Daegu 42415, South Korea.
Background: Mesenchymal stem cells (MSCs) are promising candidates for regenerative therapy due to their self-renewal capability, multilineage differentiation potential, and immunomodulatory effects. The molecular characteristics of MSCs are influenced by their location. Recently, epidural fat (EF) and EF-derived MSCs (EF-MSCs) have garnered attention due to their potential benefits to the spinal microenvironment and their high expression of neural SC markers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!