Genomic Prediction Strategies for Dry-Down-Related Traits in Maize.

Front Plant Sci

Section of Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, United States.

Published: June 2022

For efficient mechanical harvesting, low grain moisture content at harvest time is essential. Dry-down rate (DR), which refers to the reduction in grain moisture content after the plants enter physiological maturity, is one of the main factors affecting the amount of moisture in the kernels. Dry-down rate is estimated using kernel moisture content at physiological maturity and at harvest time; however, measuring kernel water content at physiological maturity, which is sometimes referred as kernel water content at black layer formation (BWC), is time-consuming and resource-demanding. Therefore, inferring BWC from other correlated and easier to measure traits could improve the efficiency of breeding efforts for dry-down-related traits. In this study, multi-trait genomic prediction models were used to estimate genetic correlations between BWC and water content at harvest time (HWC) and flowering time (FT). The results show there is moderate-to-high genetic correlation between the traits (0.24-0.66), which supports the use of multi-trait genomic prediction models. To investigate genomic prediction strategies, several cross-validation scenarios representing possible implementations of genomic prediction were evaluated. The results indicate that, in most scenarios, the use of multi-trait genomic prediction models substantially increases prediction accuracy. Furthermore, the inclusion of historical records for correlated traits can improve prediction accuracy, even when the target trait is not measured on all the plots in the training set.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9280646PMC
http://dx.doi.org/10.3389/fpls.2022.930429DOI Listing

Publication Analysis

Top Keywords

genomic prediction
24
moisture content
12
harvest time
12
physiological maturity
12
water content
12
multi-trait genomic
12
prediction models
12
prediction strategies
8
dry-down-related traits
8
grain moisture
8

Similar Publications

Background: This study aimed to investigate miRNAs and upstream regulatory transcription factors involved in schizophrenia (SZ) pathogenesis.

Methods: Differential expression of miRNAs and genes in SZ patients was investigated utilizing the gene expression omnibus dataset, gene ontology annotations, and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. Real-time quantitative polymerase chain reaction experiments were conducted to validate the predictive screening of regulatory genes in peripheral blood samples from 20 SZ patients and 20 healthy controls.

View Article and Find Full Text PDF

As natural predators of bacteria, tailed bacteriophages can be used in biocontrol applications, including antimicrobial therapy. Also, phage lysis is a detrimental factor in technological processes based on bacterial growth and metabolism. The spectrum of bacteria bacteriophages interact with is known as the host range.

View Article and Find Full Text PDF

The gene family plays a crucial role in plant growth, development, and responses to biotic and abiotic stresses. , a warm-season turfgrass with exceptional salt tolerance, can be irrigated with seawater. However, the gene family in seashore paspalum remains poorly understood.

View Article and Find Full Text PDF

-methyladenosine (mA) is a widespread post-transcriptional modification of RNA in eukaryotes. The conserved YTH-domain-containing RNA binding protein has been widely reported to serve as a typical mA reader in various species. However, no studies have reported the mA readers in ().

View Article and Find Full Text PDF

Genome-Wide Identification of Xyloglucan Endotransglucosylase/Hydrolase Multigene Family in Chinese Jujube () and Their Expression Patterns Under Different Environmental Stresses.

Plants (Basel)

December 2024

State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.

The Xyloglucan endotransglucosylase/hydrolase (XTH) family, a group of cell wall-modifying enzymes, plays crucial roles in plant growth, development, and stress adaptation. The quality and yield of Chinese jujube () fruit are significantly impacted by environmental stresses, including excessive salinity, drought, freezing, and disease. However, there has been no report of the XTH encoding genes present in the Chinese jujube genome and their response transcription level under various stresses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!