A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed!

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A prediction model with measured sentiment scores for the risk of in-hospital mortality in acute pancreatitis: a retrospective cohort study. | LitMetric

AI Article Synopsis

  • - A study was conducted to assess how nursing sentiment in notes could predict in-hospital mortality for patients with acute pancreatitis (AP), utilizing data from the MIMIC-III database and sentiment analysis techniques.
  • - Out of 631 AP patients in the study, 13.9% died during hospitalization, and it was found that more positive sentiment scores correlated with a lower risk of mortality, notably with an odds ratio of 0.448.
  • - A predictive model incorporating nursing sentiment and clinical data achieved an area under the curve (AUC) of 0.812, outperforming traditional scoring systems (SOFA and SAPS-II), indicating its potential clinical utility in predicting patient outcomes.

Article Abstract

Background: Accurate and prompt clinical assessment of the severity and prognosis of patients with acute pancreatitis (AP) is critical, particularly during hospitalization. Natural language processing algorithms gain an opportunity from the growing number of free-text notes in electronic health records to mine this unstructured data, e.g., nursing notes, to detect and predict adverse outcomes. However, the predictive value of nursing notes for AP prognosis is unclear. In this study, a predictive model for in-hospital mortality in AP was developed using measured sentiment scores in nursing notes.

Methods: The data of AP patients in the retrospective cohort study were collected from the Medical Information Mart for Intensive Care III (MIMIC-III) database. Sentiments in nursing notes were assessed by sentiment analysis. For each individual clinical note, sentiment polarity and sentiment subjectivity scores were assigned. The in-hospital mortality of AP patients was the outcome. A predictive model was built based on clinical information and sentiment scores, and its performance and clinical value were evaluated using the area under curves (AUCs) and decision-making curves, respectively.

Results: Of the 631 AP patients included, 88 cases (13.9%) cases were dead in hospital. When various confounding factors were adjusted, the mean sentiment polarity was associated with a reduced risk of in-hospital mortality in AP [odds ratio (OR): 0.448; 95% confidence interval (CI): 0.233-0.833; P=0.014]. A predictive model was established in the training group via multivariate logistic regression analysis, including 12 independent variables. In the testing group, the model showed an AUC of 0.812, which was significantly greater than the sequential organ failure assessment (SOFA) of 0.732 and the simplified acute physiology score-II (SAPS-II) of 0.792 (P<0.05). When the same level of risk was considered, the clinical benefits of the predictive model were found to be the highest compared with SOFA and SAPS-II scores.

Conclusions: The model combined sentiment scores in nursing notes showed well predictive performance and clinical value in in-hospital mortality of AP patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279801PMC
http://dx.doi.org/10.21037/atm-22-1613DOI Listing

Publication Analysis

Top Keywords

in-hospital mortality
16
sentiment scores
12
nursing notes
12
predictive model
12
measured sentiment
8
risk in-hospital
8
acute pancreatitis
8
retrospective cohort
8
cohort study
8
sentiment polarity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: