Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9175751 | PMC |
http://dx.doi.org/10.1002/jha2.145 | DOI Listing |
Front Immunol
January 2025
School of Public Health and Health Management, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
Introduction: The high percentage of Omicron breakthrough infection in vaccinees is an emerging problem, of which we have a limited understanding of the phenomenon.
Methods: We performed single-cell transcriptome coupled with T-cell/B-cell receptor (TCR/BCR) sequencing in 15 peripheral blood mononuclear cell (PBMC) samples from Omicron infection and naïve with booster vaccination.
Results: We found that after breakthrough infection, multiple cell clusters showed activation of the type I IFN pathway and widespread expression of Interferon-stimulated genes (ISGs); T and B lymphocytes exhibited antiviral and proinflammatory-related differentiation features with pseudo-time trajectories; and large TCR clonal expansions were concentrated in effector CD8 T cells, and clonal expansions of BCRs showed a preference for IGHV3.
Front Immunol
January 2025
Department of Stomatology, The People's Hospital of Deyang City, Deyang, Sichuan, China.
Background: Periodontal disease is a widespread inflammatory condition that compromises the supporting structures of the teeth, potentially resulting in tooth loss if left untreated. Despite advancements in therapeutic interventions and an enhanced understanding of its pathophysiology, emerging techniques such as single-cell RNA sequencing (scRNA-seq) and Mendelian randomization (MR) present new opportunities for precision medicine in the management of periodontal disease.
Methods: Data derived from the GSE152042 dataset underwent rigorous quality control, normalization, and dimensionality reduction using Seurat and the MonacoImmuneData framework.
Blood Adv
January 2025
The University of Sydney, Sydney, Australia.
T-cell receptor (TCR) therapies are a promising modality for the treatment of cancers, with significant efforts being directed towards acute myeloid leukaemia (AML), a particularly challenging disease. Chimeric antigen receptor (CAR) T-cells targeting single surface antigens have shown remarkable efficacy for B-cell lymphoblastic leukaemia, lymphomas and multiple myeloma. However, AML presents formidable obstacles to the effectiveness of CAR T-cells due to the widespread expression of heterogenous leukaemia immunophenotypes and surface antigen targets additionally present on normal myeloid cells.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
Acute myeloid leukemia (AML) is an aggressive malignancy that poses significant challenges due to high rates of relapse and resistance to treatment, particularly in older populations. While therapeutic advances have been made, survival outcomes remain suboptimal. The evolution of DNA and RNA sequencing technologies, including whole-genome sequencing (WGS), whole-exome sequencing (WES), and RNA sequencing (RNA-Seq), has significantly enhanced our understanding of AML at the molecular level.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370133, Chile.
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by self-antibody production and widespread inflammation affecting various body tissues. This disease is driven by the breakdown of immune tolerance, which promotes the activation of autoreactive B and T cells. A key feature of SLE is dysregulation in antigen presentation, where antigen-presenting cells (APCs) play a central role in perpetuating immune responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!