Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fatty acid amide hydrolase (FAAH) is a conserved amidase that is known to modulate the levels of endogenous -acylethanolamines (NAEs) in both plants and animals. The activity of FAAH is enhanced by synthetic phenoxyacylethanolamides resulting in greater hydrolysis of NAEs. Previously, 3--pentadecylphenolethanolamide (PDP-EA) was shown to exert positive effects on the development of Arabidopsis seedlings by enhancing Arabidopsis FAAH (AtFAAH) activity. However, there is little information regarding FAAH activity and the impact of PDP-EA in the development of seedlings of other plant species. Here, we examined the effects of PDP-EA on growth of upland cotton ( L. cv Coker 312) seedlings including two lines of transgenic seedlings overexpressing . Independent transgenic events showed accelerated true-leaf emergence compared with non-transgenic controls. Exogenous applications of PDP-EA led to increases in overall seedling growth in AtFAAH transgenic lines. These enhanced-growth phenotypes coincided with elevated FAAH activities toward NAEs and NAE oxylipins. Conversely, the endogenous contents of NAEs and NAE-oxylipin species, especially linoleoylethanolamide and 9-hydroxy linoleoylethanolamide, were lower in PDP-EA treated seedlings than in controls. Further, transcripts for endogenous cotton genes were increased following PDP-EA exposure. Collectively, our data corroborate that the enhancement of FAAH enzyme activity by PDP-EA stimulates NAE-hydrolysis and that this results in enhanced growth in seedlings of a perennial crop species, extending the role of NAE metabolism in seedling development beyond the model annual plant species, .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9277032 | PMC |
http://dx.doi.org/10.1002/pld3.421 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!