Nanotechnology mainly deals with the production and application of compounds with dimensions in nanoscale. Given their dimensions, these materials have considerable surface/volume ratios, and hence, specific characteristics. Nowadays, environmentally friendly procedures are being proposed for fabrication of Fe nanoparticles because a large amount of poisonous chemicals and unfavorable conditions are needed to prepare them. This work includes an inclusive overview on the economical and green procedures for the preparation of such nanoparticles (flower, fruits, tea, carbohydrates, and leaves). Pure and bimetallic iron nanoparticles, for instance, offer a high bandwidth and excitation binding energy and are applicable in different areas ranging from antibacterial, anticancer, and bioimaging agents to drug delivery systems. Preparation of nano-sized particles, such as those of Fe, requires the application of high quantities of toxic materials and harsh conditions, and naturally, there is a tendency to develop more facile and even green pathways (Sultana, Journal of Materials Science & Technology, 2013, 29, 795-800; Bushra et al., Journal of hazardous materials, 2014, 264, 481-489; Khan et al., Ind. Eng. Chem. Res., 2015, 54, 76-82). This article tends to provide an overview on the reports describing green and biological methods for the synthesis of Fe nanoparticles. The present review mainly highlights selenium nanoparticles in the biomedical domain. Specifically, this review will present detailed information on drug delivery, bioimaging, antibacterial, and anticancer activity. It will also focus on procedures for their green synthesis methods and properties that make them potential candidates for various biomedical applications. Finally, we provide a detailed future outlook.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9283709PMC
http://dx.doi.org/10.3389/fchem.2022.893793DOI Listing

Publication Analysis

Top Keywords

biomedical applications
8
antibacterial anticancer
8
drug delivery
8
nanoparticles
5
utility biogenic
4
biogenic iron
4
iron bimetallic
4
bimetallic nanocomposites
4
nanocomposites biomedical
4
applications review
4

Similar Publications

The controlled binding of proteins on nanoparticle surfaces remains a grand challenge required for many applications ranging from biomedical to energy storage. The difficulty in achieving this ability arises from the different functional groups of the biomolecule that can adsorb on the nanoparticle surface. While most proteins can only adopt a single structure, metamorphic proteins can access at least two different conformations, which presents intriguing opportunities to exploit such structural variations for binding to nanoparticles.

View Article and Find Full Text PDF

Emerging Violet Phosphorus Nanomaterial for Biomedical Applications.

Adv Healthc Mater

January 2025

State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, P. R. China.

Violet phosphorus (VP) is a phosphorus allotrope first discovered by Hittorf in 1865, which has aroused more attention in the biomedical field in recent years attributed to its gradually discovered unique properties. VP can be further categorized into bulk VP, VP nanosheets (VPNs), and VP quantum dots (VPQDs), and chemical vapor transport (CVT), liquid-phase/mechanical/laser exfoliation, and solvothermal synthesis are the common preparation approaches of bulk VP, VPNs, and VPQDs, respectively. Compared with another phosphorus allotrope (black phosphorus, BP) that is once highly regarded in biomedical applications, VP nanomaterial (namely VPNs and VPQDs) not only exhibits tunable bandgap, moderate on/off current ratio, and good biodegradability, but shows enhanced stability and biosafety as well, allowing it to be a promising candidate for a variety of biomedical applications like antibacterial therapy, anticancer therapy, and biosensing and disease diagnosis.

View Article and Find Full Text PDF

CLEFT: Language-Image Contrastive Learning with Efficient Large Language Model and Prompt Fine-Tuning.

Med Image Comput Comput Assist Interv

October 2024

Department of Biomedical Engineering, Yale University, New Haven, CT, USA.

Recent advancements in Contrastive Language-Image Pre-training (CLIP) [21] have demonstrated notable success in self-supervised representation learning across various tasks. However, the existing CLIP-like approaches often demand extensive GPU resources and prolonged training times due to the considerable size of the model and dataset, making them poor for medical applications, in which large datasets are not always common. Meanwhile, the language model prompts are mainly manually derived from labels tied to images, potentially overlooking the richness of information within training samples.

View Article and Find Full Text PDF

Development of a single port dual arm robotically steerable endoscope for neurosurgical applications.

Npj Robot

January 2025

Medical Robotics and Automation (RoboMed) Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA.

Single-port surgical robots have gained popularity due to less patient trauma and quicker post-surgery recovery. However, due to limited access provided by a single incision, the miniaturization and maneuverability of these robots still needs to be improved. In this paper, we propose the design of a single-port, dual-arm robotically steerable endoscope containing one steerable major cannula and two steerable minor cannulas.

View Article and Find Full Text PDF

Intelligent biology and medicine: Accelerating innovative computational approaches.

Comput Struct Biotechnol J

November 2024

Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.

In this editorial, we summarize the 2023 International Conference on Intelligent Biology and Medicine (ICIBM 2023) conference which was held on July 16-19, 2023 in Tampa, Florida, USA. We then briefly describe the nine research articles included in this special issue. ICIBM 2023 scientific program included four tutorials and workshops, four keynote lectures, four eminent scholars' presentations, 11 concurrent scientific sessions, and a poster session.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!