Octanoate is a type of classical medium-chain fatty acids, which is widely used to treat neurological and metabolic syndrome. However, the specific role of octanoate in repairing intestinal health impairment is currently unknown. Therefore, we investigated whether dietary octanoate repaired the intestinal damage induced by surplus soybean oil in . In this study, dietary octanoate alleviated abnormal morphology of the intestine and enhanced expression of ZO-1 and ZO-2 to improve intestinal physical barrier. Further, dietary octanoate increased antioxidant enzymic activities and decreased the level of ROS to alleviate the intestinal oxidative stress. Dietary octanoate also attenuated the expression of proinflammatory cytokines and the polarity of macrophage to reduce the intestinal inflammatory response. Moreover, the result of intestinal microbial 16S rRNA sequence showed that dietary octanoate repaired the intestinal mucosal microbial dysbiosis, and increased the relative abundance of . Dietary octanoate supplementation also increased the level of acetic acid in intestinal content and serum through increasing the abundance of acetate-producing strains. Overall, in , dietary octanoate might alleviated oxidative stress, inflammatory response and microbial dysbiosis to repair the intestinal damage induced by surplus soybean oil. This work provides vital insights into the underlying mechanisms and treatment strategies for intestinal damage in vertebrates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9277137 | PMC |
http://dx.doi.org/10.3389/fimmu.2022.892901 | DOI Listing |
BMC Biol
January 2025
Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
Background: Alternative food sources are crucial for the survival and reproduction of moths during nectar scarcity. Noctuid moths make a better use of fermented food sources than moths from other families, while the underlying molecular and genetic basis remain unexplored. As the fermentation progresses, yeasts lysis and the accumulation of metabolic byproducts alter the composition and the volatile release of the sugary substrates.
View Article and Find Full Text PDFAppetite
February 2025
School of Food and Nutritional Sciences, University College Cork, Cork, T12 Y337, Ireland. Electronic address:
Older adults are encouraged to increase their protein intake and engage in more physical activity to preserve muscle mass. However, since protein is considered the most satiating macronutrient, this advice might lead to a decrease in overall energy consumption. Physical activity is also recommended to older adults to enhance appetite, as it has been shown to help regulate appetite in younger adults, yet there is limited evidence to support this in older populations.
View Article and Find Full Text PDFBone
March 2025
Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India. Electronic address:
Medium chained triglycerides (MCT) ketogenic diet is being extensively investigated for its neuroprotective effects against adverse effects associated with aging and neurodegenerative disorders. Aging is a common risk factor for the development of both osteoporosis and neurological disorders. Hence, suppression of aging and age-related neurodegeneration might contribute to delaying skeletal aging.
View Article and Find Full Text PDFNutrients
November 2024
Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy.
Sci Total Environ
December 2024
Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden. Electronic address:
Perfluorooctanoic acid (PFOA) has been widely documented to affect various aspects of health, including development, metabolism and neuronal function in a variety of organisms. Despite numerous reports detailing these effects, a comprehensive mechanistic model remains elusive, especially with regard to the long-term effects of PFOA, as it bioaccumulates in food chains with a long half-life. In this study, we evaluated the impact of PFOA on several critical physiological states of Drosophila melanogaster.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!