The present study aims to examine PAB culture, synthesizing a significant number of iron-containing enzymes and capable of adhesion. Results show that increased iron concentration increased enzymes activity in all strains studied. An increase of iron ions level increasing up to 0.50-0.60 mg/ml leads to a 1.3-fold and 2-dold increase of catalase and SOD activity respectively, peroxidase activity was virtually unchanged. Optimal iron ions Fe doses to ensure active PAB growth were determined. Of all the cultures studied subsp. AC-2503 has high adhesion: AAI = 5.1; MAI = 5.60; erythrocyte involvement rate = 87%. It was shown that certain iron ion concentrations increased the specific growth rate of PAB ( subsp. AC-2500 (0.3 mg/ml) and other strains (0.4 mg/ml). A further increase in the iron ions concentration slows bacterial growth, while excessive content inhibits metabolism, including defense mechanisms that offset the negative effects of the metal. Our subsequent studies will focus on the effect of other metal ions on the metabolism of bacteria, mainly lactic acid bacteria, which are important biotechnological objects of the industry similar to propionic acid bacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9280214PMC
http://dx.doi.org/10.1016/j.sjbs.2022.02.048DOI Listing

Publication Analysis

Top Keywords

iron ions
12
increase iron
8
acid bacteria
8
iron
6
role divalent
4
divalent iron
4
iron cations
4
growth
4
cations growth
4
growth adhesive
4

Similar Publications

Heterotrophic denitrification enhancement via effective organic matter degradation driven by suitable iron dosage in sediment.

J Environ Manage

January 2025

School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China. Electronic address:

The control of internal pollution was important throughout the restoration of the lake, especially the removal of sediment internal nitrogen. Experiments involving incubation were conducted in this study to investigate the effects of iron remediation on nitrogen in both water and sediment. Adding iron with varying dosage had different effects on the nutrients content and other properties of water and sediment in remediation.

View Article and Find Full Text PDF

Fluorescent iron nanoclusters are emerging fluorescent nanomaterials. Herein, we synthesized hemoglobin-coated iron nanoclusters (Hb-Fe NCs) with a significant fluorescence emission peak at 615 nm and investigated the inner-filter effect of fluorescence induced by a manganese dioxide nanosheet (MnO NS). The fluorescence quenching of Hb-Fe NCs by a MnO NS can be significantly reversed by the addition of ascorbic acid.

View Article and Find Full Text PDF

Controlling the microorganisms employed in vinification is a critical factor for successful wine production. Novel methods aimed at lowering sulfites used for wine stabilization are sought. UV-C irradiation has been proposed as an alternative for reducing the viable cell count of microorganisms in wine and grape juice.

View Article and Find Full Text PDF

Enhancement of Antioxidant Activity, Stability, and Structure of Heme-Peptides by L-Lysine.

Foods

January 2025

Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230601, China.

Porcine blood is rich in protein and has always been the focus of research. Heme-peptides prepared from porcine hemoglobin are susceptible to oxidative degeneration during preparation and storage, thus affecting their function and stability. This study evaluated the enhancement effects of L-lysine (Lys) on recovery rate, antioxidant activity, stability, and structure.

View Article and Find Full Text PDF

The selection of suitable raw materials as adsorbents is a key factor in effectively removing phosphorus from water. As an industrial by-product, soda residue exhibits high porosity and surface area, which can effectively adsorb pollutants. Magnetic lanthanum-iron soda residue (La-Fe-CSR) was synthesized using the co-precipitation method, and its characterization and mechanism for removing phosphate were thoroughly investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!