In previous studies, we found radial extracorporeal shock wave (rESW), can promote the proliferation of neural stem cells (NSCs). Emerging evidence suggests that lncRNA NEAT1 can regulate NSCs proliferation. Whether lncRNA NEAT1 plays a role in the proliferation of NSC induced by shock waves is unclear. Cell Counting Kit-8(CCK 8) method was used to detect the proliferation of NSCs, and the relative protein and mRNA expression of related genes of Nestin, Cyclin D1 and P21 were detected by Western Blot and Quantitative real-time PCR (RT-qPCR) respectively. Immunofluorescence staining was used to observe the changes in the number of BrdU/nestin positive cells. Overexpression of NEAT1 and let 7 b in cells were used to explore whether rESW can rescue the decreased number of NSCs.We found that the optimal dose of R15 transmitter promoting NSCs proliferation is 1.5 bar, 500 pulse, 2 Hz. 1.2-1.5 bar showed a dose-dependent effect on the proliferation of NSCs, but it was negatively correlated with the proliferation effect of NSC when it was more than 1.5 bar. We revealed that let 7 b-P21 axis was involved in regulating the inhibition of NSC proliferation which was activated by NEAT1 in NSCs. In addition, we demonstrated that rESW treatment resulted in the decrease of NEAT1 expression, which was accompanied by the improved biological function including proliferation. Our results confirm that low-intensity rESW (1.5 bar,500 pulse,2 Hz) can promote the proliferation of NSCs through NEAT1-let 7 b-P21 axis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9256974 | PMC |
http://dx.doi.org/10.1016/j.reth.2022.06.006 | DOI Listing |
Toxicol In Vitro
January 2025
School of Public Health, Nantong University, Nantong 226019, Jiangsu, China. Electronic address:
2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) belongs to the category of persistent environmental pollutants, and gestational exposure to TCDD can lead to cognitive, memory, and motor deficits, as well as altered neuron development in rodents. However, the molecular mechanisms underlying TCDD's neurotoxicity remine unclear. Neural stem cells (NSCs) possess the capacity for self-renewal and can generate various cell types within the brain, playing fundamental roles in brain development and regeneration.
View Article and Find Full Text PDFFront Cell Neurosci
January 2025
School of Veterinary Medicine, Institute of Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany.
Infections impacting the central nervous system (CNS) constitute a substantial predisposing factor for the emergence of epileptic seizures. Given that epilepsy conventionally correlates with hippocampal sclerosis and neuronal degeneration, a potentially innovative avenue for therapeutic intervention involves fostering adult neurogenesis, a process primarily occurring within the subgranular zone of the dentate gyrus (DG) through the differentiation of neural stem cells (NSC). While experimental seizures induced by chemoconvulsants or electrical stimulation transiently enhance neurogenesis, the effects of encephalitis and the resultant virus-induced seizures remain inadequately understood.
View Article and Find Full Text PDFMater Today Bio
December 2024
Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
Alzheimer's disease (AD) is characterized by progressive cognitive decline due to neuronal damage and impaired neurogenesis. Preserving neuronal integrity and stimulating neurogenesis are promising therapeutic strategies to combat AD-related cognitive dysfunction. In this study, we synthesized metformin carbon dots (CMCDs) using a hydrothermal method with metformin hydrochloride and citric acid as precursors.
View Article and Find Full Text PDFSci Rep
January 2025
Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand.
Bisphenol A (BPA), an endocrine-disrupting chemical, is increasingly linked to the pathogenesis of autism spectrum disorder (ASD). This study investigates the effects of prenatal BPA exposure on neural stem cells (NSCs) from the hippocampi of rat offspring, a brain region critical for neurodevelopment and implicated in ASD. Pregnant rats were administered with BPA or vehicle control once daily via oral gavage from gestational day 1 until parturition.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.
Birth is one of the most important life events for animals. However, its significance in the developmental process is not fully understood. Here, we found that birth-induced alteration of glutamine metabolism in radial glia (RG), the embryonic neural stem cells (NSCs), is required for the acquisition of quiescence and long-term maintenance of postnatal NSCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!