This presentation details and evaluates a method for estimating the attended speaker during a two-person conversation by means of in-ear electro-oculography (EOG). Twenty-five hearing-impaired participants were fitted with molds equipped with EOG electrodes (in-ear EOG) and wore eye-tracking glasses while watching a video of two life-size people in a dialog solving a Diapix task. The dialogue was directionally presented and together with background noise in the frontal hemisphere at 60 dB SPL. During three conditions of steering (none, in-ear EOG, conventional eye-tracking), participants' comprehension was periodically measured using multiple-choice questions. Based on eye movement detection by in-ear EOG or conventional eye-tracking, the estimated attended speaker was amplified by 6 dB. In the in-ear EOG condition, the estimate was based on one selected channel pair of electrodes out of 36 possible electrodes. A novel calibration procedure introducing three different metrics was used to select the measurement channel. The in-ear EOG attended speaker estimates were compared to those of the eye-tracker. Across participants, the mean accuracy of in-ear EOG estimation of the attended speaker was 68%, ranging from 50 to 89%. Based on offline simulation, it was established that higher scoring metrics obtained for a channel with the calibration procedure were significantly associated with better data quality. Results showed a statistically significant improvement in comprehension of about 10% in both steering conditions relative to the no-steering condition. Comprehension in the two steering conditions was not significantly different. Further, better comprehension obtained under the in-ear EOG condition was significantly correlated with more accurate estimation of the attended speaker. In conclusion, this study shows promising results in the use of in-ear EOG for visual attention estimation with potential for applicability in hearing assistive devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279575 | PMC |
http://dx.doi.org/10.3389/fnins.2022.873201 | DOI Listing |
Sensors (Basel)
January 2024
Dätwyler Schweiz AG, 6467 Schattdorf, Switzerland.
In-ear acquisition of physiological signals, such as electromyography (EMG), electrooculography (EOG), electroencephalography (EEG), and electrocardiography (ECG), is a promising approach to mobile health (mHealth) due to its non-invasive and user-friendly nature. By providing a convenient and comfortable means of physiological signal monitoring, in-ear signal acquisition could potentially increase patient compliance and engagement with mHealth applications. The development of reliable and comfortable soft dry in-ear electrode systems could, therefore, have significant implications for both mHealth and human-machine interface (HMI) applications.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
June 2023
To enable continuous, mobile health monitoring, body-worn sensors need to offer comparable performance to clinical devices in a lightweight, unobtrusive package. This work presents a complete versatile wireless electrophysiology data acquisition system (weDAQ) that is demonstrated for in-ear electroencephalography (EEG) and other on-body electrophysiology with user-generic dry-contact electrodes made from standard printed circuit boards (PCBs). Each weDAQ device provides 16 recording channels, driven right leg (DRL), a 3-axis accelerometer, local data storage, and adaptable data transmission modes.
View Article and Find Full Text PDFFront Neurosci
June 2022
Eriksholm Research Centre, Part of Oticon A/S, Snekkersten, Denmark.
This presentation details and evaluates a method for estimating the attended speaker during a two-person conversation by means of in-ear electro-oculography (EOG). Twenty-five hearing-impaired participants were fitted with molds equipped with EOG electrodes (in-ear EOG) and wore eye-tracking glasses while watching a video of two life-size people in a dialog solving a Diapix task. The dialogue was directionally presented and together with background noise in the frontal hemisphere at 60 dB SPL.
View Article and Find Full Text PDFThe manuscript proposes and evaluates a real-time algorithm for estimating eye gaze angle based solely on single-channel electrooculography (EOG), which can be obtained directly from the ear canal using conductive ear moulds. In contrast to conventional high-pass filtering, we used an algorithm that calculates absolute eye gaze angle via statistical analysis of detected saccades. The estimated eye positions of the new algorithm were still noisy.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2017
Cognitive control of a hearing aid is the topic for several ongoing studies. The relevance of these studies should be seen in the light of inadequate steering of current hearing aids. While most studies are concerned with auditory attention tracking from the electroencephalogram (EEG), a complimentary approach may be to use visual attention tracking to steer the devices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!