Background: This study investigated oxidative damage to bone marrow cells in the pathogenesis of renovascular hypertension (RH).

Methods: Male C57BL/6 J mice (10-week-old and ~23 g) were divided into two groups: Sham-operated and 2K1C, which has a stainless-steel clip placed around the left renal artery. After twenty-eight days, the animals were anesthetized for hemodynamic measurements and bone marrow cells isolation. The intracellular production of ROS, DNA damage, and DNA repair kinetics were evaluated.

Results: Our results show that RH increases HSCs ROS production and that the 2K1C group showed a significant reduction of HSCs in the G0/G1 phase, increased p53 expression, DNA fragmentation, low DNA repair capacity, and a higher percentage of apoptotic cells when compared with the Sham group.

Conclusions: Our data imply that RH can compromise the hematopoiesis by increased oxidative stress leading to impaired DNA repair activity. Furthermore, this study provides new insights into the influence of hypertension on bone marrow homeostasis. This study showed for the first time that RH leads to oxidative damage, including genotoxic, to bone marrow cells. Thus, these findings provide new insights into the consequences of RH on bone marrow cells.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10641963.2022.2101658DOI Listing

Publication Analysis

Top Keywords

bone marrow
20
marrow cells
16
dna repair
12
dna damage
8
oxidative stress
8
renovascular hypertension
8
oxidative damage
8
dna
6
cells
6
bone
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!