Surface-enhanced Raman spectroscopy (SERS) is a promising technology for wearable sensors due to its fingerprint spectrum and high detection sensitivity. However, since SERS-activity is sensitive to both the distribution of "hotspots" and excitation angle, it is profoundly challenging to develop a wearable SERS sensor with high stability under various deformations during movements. Herein, inspired by omnidirectional light-harvesting of the compound eye of Xenos Peckii, a wearable SERS sensor is developed using omnidirectional plasmonic nanovoids array (OPNA), which is prepared by assembling a monolayer of metal nanoparticles into the artificial plasmonic compound-eye (APC). Specifically, APC is an interconnected frame containing omnidirectional "pockets" and acts as an "armour", not only rendering a broadband and omnidirectional enhancement of "hotspots" in the delicate nanoparticles array, but also maintaining an integrity of the "hotspots" against external mechanical deformations. Furthermore, an asymmetry super-hydrophilic pattern is fabricated on the surface of OPNA, endowing the hydrophobic OPNA with the ability to spontaneously extract and concentrate the analytes from sweat. Such an armored SERS sensor can enable the wearable and in situ analysis with high sensitivity and stability, exhibiting great potential in point-of-care analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202201508DOI Listing

Publication Analysis

Top Keywords

sers sensor
16
wearable sers
12
omnidirectional plasmonic
8
plasmonic nanovoids
8
nanovoids array
8
sensitivity stability
8
wearable
5
omnidirectional
5
sensor
4
sensor based
4

Similar Publications

Fabrication of Ag based Surface Enhanced Raman Scattering substrates with periodic mask arrays by electron beam deposition.

Anal Chim Acta

February 2025

Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No.516 Jungong Road, Shanghai, 200093, China.

Background: Surface-enhanced Raman scattering (SERS) has attracted much attention as a powerful detection and analysis tool with high sensitivity and fast detection speed. The intensity of the SERS signal mainly depended on the highly enhanced electromagnetic field of nanostructure near the substrate. However, the fabrication of high-quality SERS nanostructured substrates is usually complicated, makes many methods unsuitable for large-scale production of SERS substrates.

View Article and Find Full Text PDF

Bacterial contamination is a very serious health and environmental problem, with the main source of toxicity being lipopolysaccharides in the cell walls of Gram-negative bacteria. Therefore, the development of effective analytical methods is crucial for the detection of lipopolysaccharide content. This work facilitates the efficient generation of precisely adjustable dual-mode signals for LPS detection in surface-enhanced Raman spectroscopy (SERS) and electrochemiluminescence (ECL) by inducing anisotropic morphological evolution of Au@Ag nanocubes (Au@AgNCs) through poly-cytosine (poly-C) DNA.

View Article and Find Full Text PDF

Nanozymes, a kind of nanoparticles with enzyme-mimicking activities, have attracted considerable attention due to their robust catalytic properties, ease of preparation, and resistance to harsh conditions. By combining nanozymes with surface-enhanced Raman spectroscopy (SERS) technology, highly sensitive and selective sensors have been developed. These sensors are capable of detecting a wide range of analytes, such as foodborne toxins, environmental pollutants, and biomedical markers.

View Article and Find Full Text PDF

In situ self-cleaning PAN/CuO@Ag/Au@Ag flexible SERS sensor coupled with chemometrics for quantitative detection of thiram residues on apples.

Food Chem

January 2025

China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China. Electronic address:

Flexible surface-enhanced Raman scattering (SERS) sensors offer a promising solution for the rapid in situ monitoring of food safety. The sensor's capability to furnish quantitative detection and retain recyclability is crucial in practical applications. This study proposes a self-cleaning flexible SERS sensor, augmented with an intelligent algorithm designed for expeditious in situ and non-destructive thiram detection on apples.

View Article and Find Full Text PDF

Paper-Based Sensors: Fantasy or Reality?

Nanomaterials (Basel)

January 2025

Department of Physics and Engineering, Moldova State University, MD-2009 Chisinau, Moldova.

This article analyzes the prospects for the appearance of paper-based sensors on the sensor market. It is concluded that paper-based sensors are not a fantasy but a reality. It is shown that paper has properties that make it possible to develop a wide variety of paper-based sensors, such as SERS, colorimetric, fluorescent, conductometric, capacitive, fiber-optic, electrochemical, microfluidic, shape-deformation, microwave, and various physical sensors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!