In Situ Electrosynthesis of MAX-Derived Electrocatalysts for Superior Hydrogen Evolution Reaction.

Small

Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

Published: August 2022

MAX phases are frequently dominated as precursors for the preparation of the star material MXene, but less eye-dazzling by their own potential applications. In this work, the electrocatalytic hydrogen evolution reaction (HER) activity of MAX phase is investigated. The MAX-derived electrocatalysts are prepared by a two-step in situ electrosynthesis process, an electrochemical etching step followed by an electrochemical deposition step. First, a Mo TiAlC MAX phase is electrochemically etched in 0.5 m H SO electrolyte. Just several hours, electrochemical dealloy etching of Mo TiAlC MAX powders by applying anode current can acquire a moderated HER performance, outperforming most of reported pure MXene. It is speculated that in situ superficially architecting endogenous MAX/amorphous carbide (MAC) improves its intrinsic catalytic activity. Subsequently, highly active metallic Pt nanoparticles immobilized on MAC (MAC@Pt) shows a transcendental overpotential of 40 mV versus RHE in 0.5 m H SO and 79 mV in 1.0 m KOH at the current density of 10 mA cm without iR correction. Ultrahigh mass activity of MAC@Pt (1.5 A mg ) at 100 mV overpotential is also achieved, 29-folds than those of commercial PtC catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202203471DOI Listing

Publication Analysis

Top Keywords

situ electrosynthesis
8
max-derived electrocatalysts
8
hydrogen evolution
8
evolution reaction
8
max phase
8
tialc max
8
electrosynthesis max-derived
4
electrocatalysts superior
4
superior hydrogen
4
max
4

Similar Publications

Industrial production of hydrogen peroxide (HO) is energy-intensive and generates unwanted byproducts. Herein, an alternative production strategies of HO are demonstrated in a Zn-air and a photoelectrochemical cell. Employing an optimally produced reduced graphene oxide (rGO) electrocatalyst@air-cathode, an impressive power density of 320 Wm (geo = geometric area) is achieved along with a high HO production rate of 3.

View Article and Find Full Text PDF

Stabilizing Lattice Oxygen of Bi2O3 by Interstitial Insertion of Indium for Efficient Formic Acid Electrosynthesis.

Angew Chem Int Ed Engl

January 2025

University of Electronic Science and Technology of China, State Key Laboratory of Electronic Thin Films and Integrated Devices, No. 2006, Xiyuan Avenue, High-tech Zone (West Area), 610054, Chengdu, CHINA.

Bismuth oxide (Bi2O3) emerges as a potent catalyst for converting CO2 to formic acid (HCOOH), leveraging its abundant lattice oxygen and the high activity of its Bi-O bonds. Yet, its durability is usually impeded by the loss of lattice oxygen causing structure alteration and destabilized active bonds. Herein, we report an innovative approach via the interstitial incorporation of indium (In) into the Bi2O3, significantly enhancing bond stability and preserving lattice oxygen.

View Article and Find Full Text PDF

The development of sustainable synthetic methods for converting alcohols to amines is of great interest due to their widespread use in pharmaceuticals and fine chemicals. In this work, we present an electrochemical approach by using green electrons for the selective oxidation of benzyl alcohol to benzaldehyde using a NiOOH catalyst, followed by its reductive amination to form benzyl--butylamine. The number of Ni monolayer equivalents on the catalyst was found to significantly influence selectivity, with 2 monolayers achieving up to 90% faradaic efficiency (FE) for benzaldehyde in NaOH, while 10 monolayers performed best in a -butylamine solution (pH 11), yielding 100% FE for benzaldehyde.

View Article and Find Full Text PDF

Electrochemical activation of small molecules plays an essential role in sustainable electrosynthesis, environmental technologies, energy storage and conversion. The dynamic structural changes of catalysts during the course of electrochemical reactions pose challenges in the study of reaction kinetics and the design of potent catalysts. This short review aims to provide a balanced view of restructuring of electrocatalysts, including its fundamental thermodynamic origins and how these compare to those in thermal and photocatalysis, and highlighting both the positive and negative impacts of restructuring on the electrocatalyst performance.

View Article and Find Full Text PDF

An efficient electrocatalytic in-situ hydrogen peroxide generation for ballast water treatment with oxygen groups.

Sci Total Environ

January 2025

Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.

The in-situ electrochemical production of hydrogen peroxide (HO) offers a promising approach for ballast water treatment. However, further advancements are required to develop electrocatalysts capable of achieving efficient HO generation in seawater environments. Herein, we synthesized two-dimensional lamellated porous carbon nanosheets enriched with oxygen functional groups, which exhibited exceptional performance in HO electrosynthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!