The present research presents synthesis and substantial utilization of a nanocomposite of reduced graphene oxide/polypyrrole nanotubes to modify graphite screen printed electrode (rGO/PPy NTs-GSPE) for detection of sulfite. The nanocomposite preparation was done by hydrothermal protocol, followed by characterization by energy-dispersive X-ray (EDX) and field emission-scanning electron microscopy (FE-SEM). Electrocatalytic sensing of sulfite is carried out using differential pulse voltammetric (DPV), linear sweep voltammetry (LSV), cyclic voltammetric (CV), and Chronoamperometry. Electrochemical behaviors of modified and unmodified electrodes were explored with CV method. In addition, DPV was employed for anodic peak and quantitatively detecting sulfite. The DPV results unveiled a linear response of the sensor to various sulfite contents (0.04-565.0 μM) with a narrow detection limit (0.01 μM) and admirable sensitivity (0.0483 μA/μΜ). The diffusion coefficient (D) for sulfite using rGO/PPy NTs-GSPE, 9.9 × 10 cm /s was obtained. The sensor was also successful in the sulfite detection in real specimens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2022.113274DOI Listing

Publication Analysis

Top Keywords

graphite screen
8
screen printed
8
printed electrode
8
reduced graphene
8
graphene oxide/polypyrrole
8
oxide/polypyrrole nanotubes
8
rgo/ppy nts-gspe
8
sulfite
7
surface amplification
4
amplification graphite
4

Similar Publications

The Coronavirus Disease 2019 (COVID-19) recently emerged as a life-threatening global pandemic that has ravaged millions of lives. The affected patients are known to frequently register numerous comorbidities induced by COVID-19 such as diabetes, asthma, cardiac arrest, hypertension, and neurodegenerative diseases, to name a few. The expensiveness and probability of false negative results of conventional screening tests often delay timely diagnosis and treatment.

View Article and Find Full Text PDF

Carcinoembryonic antigen (CEA) is a broad-spectrum biomarker, and its accurate detection and analysis is important for early clinical diagnosis and treatment. This study aimed to develop a highly sensitive and selective sandwich-type immunosensor based on electrochemical impedance spectroscopy (EIS) for the accurate detection of CEA. A novel composite material, gold nanoparticle/reduced-graphene oxide/graphitic carbon nitride (AuNPs/rGO/g-CN), was synthesized with excellent electrical conductivity and a large specific surface area to immobilize biological probes.

View Article and Find Full Text PDF

Flower-like tailored carbon nitride oligomer as an excellent aggregation-induced electrochemiluminescence emitter for sensitive immunoassay of neuron-specific enolase via dual quenching by bimetallic phenolic networks.

J Colloid Interface Sci

January 2025

Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China. Electronic address:

The adjustment of the electrochemiluminescence (ECL) of polymeric carbon nitride (CN) is essential for its application in sensitive immunoassays. However, such modification through aggregation-induced emission (AIE) has not yet been reported. Herein, aggregation-induced ECL in CN oligomer (CNO) was induced through the introduction of a rotatable imine moiety, with the resulting material exhibiting excellent performance in the targeted immunodetection of neuron-specific enolase.

View Article and Find Full Text PDF

Cholesterol mediates the potential adverse influence of graphene quantum dots on placental lipid membrane model.

Sci Rep

December 2024

College of Physical Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.

Nanomaterial-biomembrane interactions constitute a critical biological process in assessing the toxicity of such materials in theoretical studies. However, many investigations simplify these interactions by using membrane models containing only one or a few lipid types, deviating significantly from the complexity of real membrane compositions. In particular, cholesterol, a ubiquitous lipid essential for regulating membrane fluidity and closely linked to various diseases, is often overlooked.

View Article and Find Full Text PDF

In order to identify carcinoembryonic antigen (CEA) in serum samples, an innovative smartphone-based, label-free electrochemical immunosensor was created without the need for additional labels or markers. This technology presents a viable method for on-site cancer diagnostics. The novel smartphone-integrated, label-free immunosensing platform was constructed by nanostructured materials that utilize the layer-by-layer (LBL) assembly technique, allowing for meticulous control over the interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!