Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Event-related potential (ERP) studies investigating the processing of self-induced stimuli often rely on the assumption that ballistic actions and motor ERPs are constant across different sets of action effects. Since recent studies challenge this motor equivalence assumption, we examined whether neglecting effect-related motor differences can bias the estimation of auditory ERPs in a typical action-related ERP attenuation paradigm. We increased action variability with a force production task and selected an event subset in which the motor equivalence assumption was true. ERP attenuation estimated in this subset was compared with attenuation obtained in the standard task, where motor differences were not controlled. Violation of the motor equivalence assumption resulted in a positive deflection overlapping auditory ERPs elicited by self-induced sounds, leading to the overestimation of N1- and underestimation of P2-attenuation. This demonstrates that sensory-effect-related motor differences should be considered when separating sensory and motor components in ERPs elicited by self-induced stimuli.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopsycho.2022.108387 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!