Validation of a cell integrated next-generation impactor to assess in vitro drug transport of physiologically relevant aerosolised particles.

Int J Pharm

Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW 2109, Australia. Electronic address:

Published: August 2022

The development of novel inhaled formulations in the pre-clinical stage has been impeded by a lack of meaningful information related to drug dissolution and transport at the lung epithelia due to the absence of physiologically relevant in vitro respiratory models. The objective of the present study was to develop an in vitro experimental model, which combined the next generation impactor (NGI) and two respiratory epithelial cell lines, for examining the aerodynamic performance of dry powder inhalers and the fate of aerosolised drugs following lung deposition. The NGI impaction plates of stage 3 (i.e., a cut-off diameter of 2.82-4.46 µm) and stage 7 (i.e., a cut-off diameter of 0.34-0.55 µm) were modified to accommodate 3 cell cultures inserts. Specifically, Calu-3 cells and H441 cells, which are representative of the bronchial and alveolar epithelia in the lung, respectively, were cultivated at the air-liquid interface on Snapwells with polycarbonate membranes. The aerodynamic particle size distribution of the modified NGI was investigated using resveratrol dry powder formulation (as a model drug). The suitability of such an in vitro model was confirmed by examining the in vitro aerodynamic performance of the model drug as compared to the conventional NGI setup (i.e., without the integrated Snapwell inserts), as well as the effect of experimental conditions (e.g., 60 L/min airflows) on the cells in the integrated Snapwell inserts. After deposition of the aerodynamically fractioned resveratrol, the permeation of the drug across the cell layer to the basolateral chamber of the Snapwell inserts was evaluated over 24 h. Results obtained from the drug transport study showed that the cell-integrated NGI provided realistic drug delivery conditions to the cells that can be used to assess the fate of fractionated aerosol particles. This system enables a better understanding of the in vitro drug deposition in the lungs and allows studies on both aerodynamic characterisation and drug transport (drug biological interactions with the cells) to be performed simultaneously.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2022.122024DOI Listing

Publication Analysis

Top Keywords

drug transport
12
snapwell inserts
12
drug
10
vitro drug
8
physiologically relevant
8
aerodynamic performance
8
dry powder
8
stage cut-off
8
cut-off diameter
8
model drug
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!