The polymer/solvent system poly(l-lactic acid)/ethyl butylacetylaminopropionate (PLLA/IR3535) is regarded as an insect-repellent-delivery system, serving, e.g., for fighting mosquito-borne tropical diseases. In such systems the solid polymer hosts the liquid repellent, with the latter slowly released to the environment, expelling mosquitoes. As a new approach, exceeding prior work about application of different technologies to obtain such devices, in this work, samples of the polymer/repellent system PLLA/IR3535 were prepared by 3D-printing. The experiments showed that it is possible to print 3D-parts containing up to 25 m% repellent, with an only minor loss of repellent during the printing process. For samples containing low amount of repellent, crystallization of PLLA was suppressed due to the rather fast cooling step and the low bed temperature of around 25 °C, being lower than the glass transition temperature of the homogeneous polymer/repellent strands. At higher repellent concentration, due to the lowering of the glass transition temperature to near or even below ambient temperature, the crystallinity slowly increased during storage after printing. For all samples, regardless of the initial repellent concentration, the repellent-release rate increases with temperature, and at ambient temperature the release-time constant is in the order of 10 days. The study successfully proved the applicability of the technology of extrusion-based 3D-printing for the preparation of polymer parts with a specific shape/design containing mosquito-repellent at a concentration which raises the expectation to be used as a repellent delivery-device.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2022.122023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!