Background: Alveolar echinococcosis (AE), which is caused by larval Echinococcus multilocularis, is one of the world's most dangerous neglected diseases. Currently, no fully effective treatments are available to cure this disease.
Methods: In vitro protoscolicidal assay along with in vivo murine models was applied in repurposing drugs against AE. Genome-wide identification and homology-based modeling were used for predicting drug targets. RNAi, enzyme assay, and RNA-Seq analyses were utilized for investigating the roles in parasite survival and validations for the drug target.
Findings: We identified nelfinavir as the most effective HIV protease inhibitor against larval E. multilocularis. Once-daily oral administration of nelfinavir for 28 days resulted in a remarkable reduction in parasite infection in either immune-competent or immunocompromised mice. E. multilocularis DNA damage-inducible 1 protein (EmuDdi1) is predicted as a target candidate for nelfinavir. We proved that EmuDdi1 is essential for parasite survival and protein excretion and acts as a functionally active protease for this helminth. We found nelfinavir is able to inhibit the proteolytic activity of recombinant EmuDdi1 and block the EmuDdi1-related pathways for protein export. With other evidence of drug efficacy comparison, our results suggest that inhibition of EmuDdi1 is a mechanism by which this HIV proteinase inhibitor mediates its antiparasitic action on echinococcosis.
Interpretation: This study demonstrates that nelfinavir is a promising candidate for treating echinococcosis. This drug repurposing study proves that the widely prescribed drug for AIDS treatment is potent in combating E. multilocularis infection and thus provides valuable insights into the development of single-drug therapy for highly prevalent co-infection between HIV and helminth diseases.
Funding: This work was supported by the National Natural Science Foundation of China (31802179), the Natural Science Foundation of Gansu Province, China (No. 21JR7RA027), and the State Key Laboratory of Veterinary Etiological Biology (No. SKLVEB2021YQRC01).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9294487 | PMC |
http://dx.doi.org/10.1016/j.ebiom.2022.104177 | DOI Listing |
J Biomol Struct Dyn
January 2025
Laboratory of Biology and Health, URAC 34, Faculty of Sciences, Ben M'Sik Hassan II University of Casablanca, Casablanca, Morocco.
The recent spread of SARS-CoV-2 has led to serious concerns about newly emerging infectious coronaviruses. Drug repurposing is a practical method for rapid development of antiviral agents. The viral spike protein of SARS-CoV-2 binds to its major receptor ACE2 to promote membrane fusion.
View Article and Find Full Text PDFJ Antimicrob Chemother
January 2025
CH Tourcoing, Service Universitaire des Maladies Infectieuses, 59200 Tourcoing, France.
Introduction: The specificity of HIV-1 DNA genotypic resistance tests (GRTs) is hampered by the detection of the APOBEC-context drug resistance mutations (AC DRMs), usually harboured by replication-incompetent proviruses. We sought factors associated with defective sequences in the HIV-1 pol region. In addition, AC DRMs and their link with defective sequences were investigated.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2025
Department of Infectious Diseases, Kumamoto University School of Medicine, Kumamoto 860-8556, Japan; Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
We describe here the design, synthesis, and X-ray structural studies of a new class of HIV-1 protease inhibitors containing 8-oxabicyclo[3.2.1]octanol-derived P2 ligands.
View Article and Find Full Text PDFMar Environ Res
January 2025
Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Oswaldo Cruz, 266, C21, bloco C, Boqueirão, Santos, 11045-907, São Paulo, Brazil. Electronic address:
The antiretroviral therapy program's success in managing the human immunodeficiency virus (HIV) has inadvertently led to the release of antiretrovirals (ARVs) into worldwide aquatic ecosystems. However, few studies investigated the risks of ARV loadings that flow continuously to the marine waters of South America (such as Brazil). Against this backdrop, the aims of this study were: (i) to estimate the Predicted Environmental Concentration (PEC) of thirteen ARVs worldwide used in HIV treatment, and which are frequently disposed of in the marine aquatic ecosystems of Guarujá, São Paulo coastline, Brazil.
View Article and Find Full Text PDFJ Antimicrob Chemother
January 2025
Department of Laboratory Medicine, Yunnan Provincial Infectious Disease Hospital, Kunming 650301, China.
Objectives: This study aimed to evaluate the prevalence and characteristics of drug resistance mutations (DRMs) in patients with low-level viremia (LLV) in Southwestern China, as it has become a growing challenge in AIDS clinical practice.
Methods: This cross-sectional study was performed in Yunnan Province, Southwestern China. LLV was defined as 50-999 copies/mL of plasma viral load with antiretroviral therapy (ART) for at least 6 months.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!