Time-of-flight secondary ion mass spectrometry (TOF-SIMS) with the Bi liquid metal ion gun was used to investigate the content of lipids and amino acids (AAs) in extracellular vesicles (EVs). We induced metabolic changes in human pancreatic β-cells by stimulation with high glucose concentrations (35 mM) and tested the hypothesis of hyperglycemia (HG) has a detrimental effect on lipids and AAs in released EV subpopulations: ectosomes and exosomes. As a result of HG treatment, selected fatty acids (FAs) such as arachidonic, myristic and palmitic acids, changed their abundance in ectosomes and exosomes. Also, intensities of the characteristic peaks for cholesterol (m/z 95.09; 147.07; 161.11; 369.45) along with the molecular ion m/z 386.37 [CHO] under HG conditions, both for ectosomes and exosomes, have changed significantly. Comparative analysis of HG EVs and normoglycemic (NG) ones showed statistically significant differences in the signal intensities of four AAs: valine (m/z 72.08 and 83.05), isoleucine (m/z 86.10), phenylalanine (m/z 120.08 and 132.05) and tyrosine (m/z 107.05 and 136.09). We confirmed that ToF-SIMS is a useful technique to study selected AAs and lipid profiles in various EV subpopulations. Our study is the first demonstration of changes in FAs and AAs in exosomes and ectosomes derived from β-cells under the influence of HG.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2022.07.020 | DOI Listing |
Lipids Health Dis
January 2025
Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an asymptomatic, multifaceted condition often associated with various risk factors, including fatigue, obesity, insulin resistance, metabolic syndrome, and sleep apnea. The increasing burden of MASLD underscores the critical need for early diagnosis and effective therapies. Owing to the lack of efficient therapies for MASLD, early diagnosis is crucial.
View Article and Find Full Text PDFBiomedicines
November 2024
Department of Genetics, Cell and Immunobiology, Semmelweis University, 1085 Budapest, Hungary.
: We aimed to assess the relationship among circulating extracellular vesicles (EVs), hypoxia-related proteins, and the conventional risk factors of life-threatening coronary artery disease (CAD) to find more precise novel biomarkers. : Patients were categorized based on coronary CT angiography. Patients with a Segment Involvement Score > 5 were identified as CAD patients.
View Article and Find Full Text PDFJ Cell Sci
December 2024
Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
Cells can communicate with neighboring and more distant cells by secretion of extracellular vesicles (EVs). EVs are lipid bilayer membrane-bound structures that can be packaged with proteins, nucleic acids and lipids that mediate cell-cell signaling. EVs are increasingly recognized to play numerous important roles in both normal physiological processes and pathological conditions.
View Article and Find Full Text PDFPharmaceutics
October 2024
School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
In the tenth year since the first edition of MISEV was released in 2014, MISEV2023 has been reported in 2024 with the aim of refining the standard and improving the rigor, reproducibility, and transparency of extracellular vesicle (EV) research to clarify the requirements for experimental design of EVs, emphasize the importance of reproducible experimental results as well as encouraging openness of experimental information. The release of MISEV has significantly contributed to the quality of research in the field of EVs, which creates a more reliable research environment. However, despite the important role of MISEV, there is still a need for the EV researchers to continue to push for the widespread implementation of the guidelines to meet the evolving nature and challenges of EV research.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Emergency Medicine, School of Medicine, University of Maryland, Baltimore, MD 21250, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!