Despite having disease-specific pathologic features and symptoms, neurodegenerative diseases share common mechanisms, such as excitotoxicity, neuroinflammation, and neurotransmitter dysregulation. Although the common underlying cause of these neurodegenerative processes has yet to be identified, accumulating evidence suggests that branched-chain amino acids (BCAAs) could be involved. BCAAs have been shown to not only influence the central levels of neurotransmitters but also to induce excitotoxicity, hyperexcitability, inflammation, and oxidative stress. Furthermore, emerging evidence indicates that BCAA metabolism may be dysregulated in major neurodegenerative diseases, namely Alzheimer's and Parkinson's diseases and amyotrophic lateral sclerosis. In this review, we identified the neurodegenerative mechanisms of BCAAs and outlined their potential roles in neurodegenerative diseases, suggesting that targeting BCAA metabolism may represent a new approach to identifying new therapeutic targets for multifaceted neurodegenerative diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nut.2022.111762 | DOI Listing |
Am J Geriatr Psychiatry
December 2024
HM CINAC (Centro Integral de Neurociencias Abarca Campal) (RFF, CDTP, CGS), Hospital Universitario HM Puerta del Sur, HM Hospitales. Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales (RFF, CDTP, CGS), Madrid, Spain; Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED) (CGS), Instituto Carlos III, Madrid, Spain; University CEU-San Pablo (CGS), Madrid, Spain. Electronic address:
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor and non-motor manifestations, including alexithymia. This condition is defined by difficulty in recognizing, articulating, and expressing one's emotional states. In this study, we conducted a systematic review and meta-analysis to compare the prevalence of alexithymia in PD patients and a healthy population, and to identify associated demographic and clinical factors.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
7T Magnetic Resonance Imaging Translational Medical Center, Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
Introduction: The choroid plexus (CP) may play a crucial role in brain degeneration. We aim to assess whether CP cysts (CPCs), defined using ultra-high field magnetic resonance imaging (MRI), relate to aging and neurodegeneration.
Methods: We used multi-sequence 7T MRI to observe CPCs, characterizing their presence and characteristics in healthy younger controls, healthy older controls (OCs), patients with Alzheimer's disease (AD), patients with Parkinson's disease (PD), and patients with uremic encephalopathy.
Alzheimers Dement
December 2024
Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
Alzheimers Dement
December 2024
Centre for Healthy Brain Ageing, Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK.
Introduction: Neuropsychiatric symptoms (NPSs) are common in dementia with Lewy bodies (DLB) but their neurobiological mechanisms are poorly understood.
Methods: NPSs and cognition were assessed annually in participants (DLB n = 222; Alzheimer's disease [AD] n = 125) from the European DLB (E-DLB) Consortium, and plasma phosphorylated tau-181 (p-tau181) and p-tau231 concentrations were measured at baseline.
Results: Hallucinations, delusions, and depression were more common in DLB than in AD and, in a subgroup with longitudinal follow-up, persistent hallucinations and NPSs were associated with lower p-tau181 and p-tau231 in DLB.
Prog Biophys Mol Biol
December 2024
Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi No. 106, Beykoz, Istanbul 34820 Turkey. Electronic address:
The intersection of electromagnetic radiation and neuronal communication, focusing on the potential role of biophoton emission in brain function and neurodegenerative diseases is an emerging research area. Traditionally, it is believed that neurons encode and communicate information via electrochemical impulses, generating electromagnetic fields detectable by EEG and MEG. Recent discoveries indicate that neurons may also emit biophotons, suggesting an additional communication channel alongside the regular synaptic interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!