Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The alarming output of waste activated sludge (WAS) from industries requires proper management routes to minimize its impact on the environment during disposal. Pyrolysis is a feasible way of processing and valorizing WAS into higher-value products of alternate use. Despite extensive research into the potential of WAS through pyrolysis, the technology's long-term viability and environmental impact have yet to be fully revealed. In addition, the environmental effects of utilizing different pyrolysis atmosphere (N or CO) has not been studied before, although benefits of CO reactivity during pyrolysis have been discovered. This study evaluates the process's environmental impact, carbon footprint, and bioenergy yield when different pyrolysis atmospheres are used. The global warming potential (GWP) for a functional unit of 1 t of dried WAS is 203.81 kg CO. The heat required during pyrolysis contributes the most (63.7%) towards GWP due to high energy usage, followed by the drying process (23.6%). Transportation contributes the most towards toxicity impact (59.3%) through dust, NO, NH and SO emissions. The initial moisture content of raw WAS (65%) greatly impacts overall energy consumption and environmental impact. Pyrolysis in an N atmosphere will result in a higher overall bioenergy yield (833 kWh/tonne) and a lower carbon footprint (-1.09 kg CO/tonne). However, when CO was used, the specific energy value within the biochar is higher (22.26 MJ/kg) due to enhanced carbonization. The carbon content of gas derived increased due to higher CO yield. From an energy perspective, the current setup will achieve a net positive bioenergy yield of 561 kW (CO) and 833 kW (N), where end products like biochar, bio-oil and gas can be used for power production. Despite the energy-intensive process, microwave pyrolysis has excellent potential to achieve a negative carbon footprint. The biochar used for soil amendment served as a good carbon sink. The utilization of CO as carrier gases provides a pathway to utilize anthropogenic CO, which helps reduce global warming. This work demonstrates microwave pyrolysis as a negative emission, bioenergy-producing approach for WAS disposal and valorization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2022.115665 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!