Rapid testing on the effect of cracks on solar cells output power performance and thermal operation.

Sci Rep

Department of Electronic Engineering, University of York, Heslington, York, YO10 5DD, UK.

Published: July 2022

This work investigates the impact of cracks and fractural defects in solar cells and their cause for output power losses and the development of hotspots. First, an electroluminescence (EL) imaging setup was utilized to test ten solar cells samples with differing crack sizes, varying from 1 to 58%. Our results confirm that minor cracks have no considerable effect upon solar cell output, and they develop no hotspots. However, larger cracks can lead to drastic decreases in the output power, close to - 60%. Furthermore, as the crack area increased, there was a further increase in the cell's temperature under standard test conditions. On the contrary, no hotspots were found for the solar cells affected by significant creak areas (crack percentage > 46%) because there were insufficient areas to develop a hotspot. Last, a comparative analysis with solar cells affected by potential induced degradation (PID) was made. We found a strong relationship in the output power losses, and the PID test critically impacted the cells by developing localized hotspots at a temperature level close to 50 °C.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9288437PMC
http://dx.doi.org/10.1038/s41598-022-16546-zDOI Listing

Publication Analysis

Top Keywords

solar cells
20
output power
16
cells output
8
power losses
8
solar
6
cells
6
output
5
rapid testing
4
cracks
4
testing cracks
4

Similar Publications

Efficient ternary organic solar cells with suppressed nonradiative recombination via B‒N based polymer donor.

iScience

January 2025

Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.

Organic solar cells (OSCs) have developed rapidly in recent years. However, the energy loss ( ) remains a major obstacle to further improving the photovoltaic performance. To address this issue, a ternary strategy has been employed to precisely tune the and boost the efficiency of OSCs.

View Article and Find Full Text PDF

In the past two decades, organic solar cells (OSCs) have begun to attract attention as the efficiency of inorganic solar cells gradually approaches the theoretical limit. In the early development stage of OSCs, p-type conjugated polymers and n-type fullerene derivatives were the most commonly used electron donors and acceptors. However, with further research, the shortcomings of fullerene materials have become increasingly apparent.

View Article and Find Full Text PDF

NbO(OH) has emerged as a highly attractive photocatalyst based on its chemical stability, energetic band positions, and large active lattice sites. Compared to other various photocatalytic semiconductors, it can be synthesized easily. This study presents a systematic analysis of pristine and doped NbO(OH) based on recent developments in related research.

View Article and Find Full Text PDF

Red-shifted optical absorption induced by donor-acceptor-donor π-extended dibenzalacetone derivatives.

RSC Adv

January 2025

Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal Rural do Semi-Árido (UFERSA) CEP 59625-900 Mossoró RN Brazil

Chalcones demonstrate significant absorption in the near ultraviolet-visible spectrum, making them valuable for applications such as solar cells, light-emitting diodes, and nonlinear optics. This study investigates four dibenzalacetone derivatives (DBAd), DBA, DBC, DEP, and DMA, examining the impact of electron-donating and electron-withdrawing groups and conjugation elongation on their electronic structure in solvents of varying polarities. Using the Polarizable Continuum Model (PCM) and time-dependent density functional theory (TD-DFT), we characterized the excited states of these compounds.

View Article and Find Full Text PDF

The growing demand for efficient, stable, and environmentally friendly photovoltaic technologies has motivated the exploration of nontoxic perovskite materials such as KGeCl. However, the performance of KGeCl-based perovskite solar cells (PSCs) depends heavily on the compatibility of charge transport layers (CTLs) and optimization of device parameters. In this study, six PSC configurations were simulated using SCAPS-1D software, incorporating CTLs such as Alq, CSTO, VO, PB, and SbS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!