Quantum computing crucially relies on the ability to efficiently characterize the quantum states output by quantum hardware. Conventional methods which probe these states through direct measurements and classically computed correlations become computationally expensive when increasing the system size. Quantum neural networks tailored to recognize specific features of quantum states by combining unitary operations, measurements and feedforward promise to require fewer measurements and to tolerate errors. Here, we realize a quantum convolutional neural network (QCNN) on a 7-qubit superconducting quantum processor to identify symmetry-protected topological (SPT) phases of a spin model characterized by a non-zero string order parameter. We benchmark the performance of the QCNN based on approximate ground states of a family of cluster-Ising Hamiltonians which we prepare using a hardware-efficient, low-depth state preparation circuit. We find that, despite being composed of finite-fidelity gates itself, the QCNN recognizes the topological phase with higher fidelity than direct measurements of the string order parameter for the prepared states.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9288436 | PMC |
http://dx.doi.org/10.1038/s41467-022-31679-5 | DOI Listing |
Adv Sci (Weinh)
January 2025
Data61, CSIRO, Clayton, VIC, 3168, Australia.
The rapid growth of Internet of Things (IoT) devices necessitates efficient data compression techniques to manage the vast amounts of data they generate. Chemiresistive sensor arrays (CSAs), a simple yet essential component in IoT systems, produce large datasets due to their simultaneous multi-sensor operations. Classical principal component analysis (cPCA), a widely used solution for dimensionality reduction, often struggles to preserve critical information in complex datasets.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Clinical Laboratory of Sir Run Run Shaw Hospital, College of Biosystems Engineering and Food Science, Zhejiang University School of Medicine, Hangzhou 310058, People's Republic of China.
The escalating growth in computing power and the advent of quantum computing present a critical threat to the security of modern cryptography. Two-factor authentication strategies can effectively resist brute-force attacks to improve the security of access control. Herein, we proposed a two-factor and two-authentication entity strategy based on the trans-cleavage activity of CRISPR-Cas and the "dual-step" sequence-specific cleavage of Argonaute.
View Article and Find Full Text PDFSmall
January 2025
Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, Hong Kong SAR, 999077, P. R. China.
Metal halide perovskite nanoplatelets (NPls) possess ultra-narrow photoluminescence (PL) bands tunable over the entire visible spectral range, which makes them promising for utilization in light-emitting diodes (LEDs) with spectrally pure emission colors. This calls for development of synthetic methods toward perovskite NPls with a high degree of control over both their thickness and lateral dimensions. A general strategy is developed to obtain such monodisperse CsPbI NPls through the control over the halide-to-lead ratio during heating-up reaction.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Tsinghua University, Chemistry Department, 1 Tsinghua Yuan, Haidian District, 100084, Beijing, CHINA.
Open metal sites are crucial in catalysis. We have used a "loose coordination strategy" (LCS) to preorganize open metal sites in gold cluster catalysts. A gold nanocluster with composition of [Au26(3,4-Me2-Ph-form)9(iPr2-imy)3(Me2S)](BF4)2(iPr2-imy = 1,3-Diisopropylimidazolium tetrafluoroborate, 3,4-Me2-Ph-form = N,N'-Di(3,4-dimethyl-phenyl)formamidine) (Au26) has been obtained by one pot synthesis, i.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Research Center of Genetic Resources, National Agriculture and Food Research Organization, Ibaraki, Japan.
Vigna marina (Barm.) Merr. is adapted to tropical marine beaches and has an outstanding tolerance to salt stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!