Natural killer (NK) cells are cytotoxic lymphocytes that play a critical role in the innate immune system. Although cytokine signaling is crucial for the development, expansion, and cytotoxicity of NK cells, the signaling pathways stimulated by cytokines are not well understood. Here, we sought to compare the early signaling dynamics induced by the cytokines interleukin (IL)-2 and IL-15 using liquid chromatography-mass spectrometry (LC-MS)-based phospho-proteomics. Following stimulation of the immortalized NK cell line NK-92 with IL-2 or IL-15 for 5, 10, 15, or 30 min, we identified 8,692 phospho-peptides from 3,023 proteins. Comparing the kinetic profiles of 3,619 fully quantified phospho-peptides, we found that IL-2 and IL-15 induced highly similar signaling in NK-92 cells. Among the IL-2/IL-15-regulated phospho-peptides were both well-known signaling events like the JAK/STAT pathway and novel signaling events with potential functional significance including LCP1 pSer5, STMN1 pSer25, CHEK1 pSer286, STIM1 pSer608, and VDAC1 pSer104. Using bioinformatic approaches, we sought to identify kinases regulated by IL-2/IL-15 stimulation and found that the p90 ribosomal S6 kinase (p90RSK) family was activated by both cytokines. Using pharmacological inhibitors, we then discovered that RSK signaling is required for IL-2 and IL-15-induced proliferation in NK-92 cells. Taken together, our analysis represents the first phospho-proteomic characterization of cytokine signaling in NK cells and increases our understanding of how cytokine signaling regulates NK cell function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cyto.2022.155958 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!