Hybrid colloidal gels with tunable elasticity formed by charge-driven assembly between spherical soft nanoparticles and discotic nanosilicates.

J Colloid Interface Sci

Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States; Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States. Electronic address:

Published: December 2022

Colloidal gels based on electrostatic interparticle attractions hold unexploited potential for tailoring their microstructure and properties. Here, we demonstrate that hetero-aggregation between oppositely charged particles with different geometries is a viable strategy for controlling their properties. Specifically, we studied hybrid colloidal gels prepared by the charge-driven assembly of oppositely charged spherical gelatin nanoparticles and two-dimensional (2D) nanosilicates. We show that the asymmetry between the building blocks and the resulting anisotropic interparticle interactions produces a variety of nanostructures and hybrid colloidal gels that exhibit high elasticity at low colloidal volume fractions. Tuning the competition between different attractive interactions in the system by varying the spatial charge heterogeneity on the 2D nanosheets, composition, and ionic strength was found to alter the mechanism of gel formation and their rheological properties. Remarkably, increasing the mass ratio of 2D nanosheets to spherical nanoparticles at a constant total mass fraction affords hybrid gels that exhibit an inverse relationship between elasticity and volume fraction. However, these hybrid gels are easily fluidized and exhibit rapid structural recovery once the stress is removed. These features allow for the engineering of versatile 3D-printable hybrid colloidal gels, whose structure and viscoelastic response are governed by parameters that have not been explored before.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2022.07.039DOI Listing

Publication Analysis

Top Keywords

colloidal gels
20
hybrid colloidal
16
charge-driven assembly
8
oppositely charged
8
gels exhibit
8
hybrid gels
8
gels
7
hybrid
6
colloidal
5
gels tunable
4

Similar Publications

Background: Food safety has attracted increasing attention in recent years. Harmful gases often produced during food storage have devastating effects on human health and ecosystems, and identifying and detecting them is essential. To date, many traditional methods have been used to monitor the freshness of food products.

View Article and Find Full Text PDF

Carbon dot embedded hybrid microgel from synthesis to sensing: Experimental and theoretical approach.

Anal Chim Acta

February 2025

Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India; Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, Simhat, Haringhata, West Bengal, 741249, India. Electronic address:

Background: The intellectual progress in fabricating artificial probes for selective appraisal of biologically admissible amino acids has displayed exponential growth in recent era.The neoteric era in material science has witnessed the significant application of carbon quantum dots (CQDs). However, the hybrid microgel of CQDs was less explored.

View Article and Find Full Text PDF

A wearable electrochemical sensor utilizing multifunctional hydrogel for antifouling ascorbic acid quantification in sweat.

Anal Chim Acta

February 2025

Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China. Electronic address:

The accurate and reliable quantification of the levels of disease markers in human sweat is of significance for health monitoring through wearable sensing technology, but the sensors performed in real sweat always suffer from biofouling that cause performance degradation or even malfunction. We herein developed a wearable antifouling electrochemical sensor based on a novel multifunctional hydrogel for the detection of targets in sweat. The integration of polyethylene glycol (PEG) into the sulfobetaine methacrylate (SBMA) hydrogel results in a robust network structure characterized by abundant hydrophilic groups on its surface, significantly enhancing the PEG-SBMA hydrogel's antifouling and mechanical properties.

View Article and Find Full Text PDF

Soft ionic conductors are promising candidates for epidermal electrodes, flexible sensors, ionic skins, and other soft iontronic devices. However, their inadequate ionic conductivity and mechanical properties (such as toughness and adhesiveness) are still the main constraints for their wide applications in wearable bioelectronics. Herein, an all-biocompatible composite gel with a double-network (DN) strategy is proposed.

View Article and Find Full Text PDF

Novel Gel Formulation and Deep Injection Techniques for Lifting Effects in Cosmetic Dermatology.

J Cosmet Dermatol

January 2025

CGH Compagnie Generale des Hopitaux, Rome, Italy.

Introduction: In recent years, the field of aesthetic dermatology has witnessed a surge in demand for minimally invasive procedures aimed at rejuvenating aging skin. This study aims to address this demand by evaluating the effectiveness of the injectable gel in rejuvenating aging skin, particularly by targeting collagen regeneration and lifting effect.

Materials And Methods: The study involved 43 participants who underwent three monthly injection sessions targeting retaining ligaments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!