To reduce microplastic contamination in the environment, we need to better understand its sources and transit, especially from land to sea. This study examines microplastic contamination in Jakarta's nine river outlets. Microplastics were found in all sampling intervals and areas, ranging from 4.29 to 23.49 particles m. The trend of microplastic contamination tends to increase as the anthropogenic activity towards Jakarta Bay from the eastern side of the bay. Our study found a link between rainfall and the abundance of microplastic particles in all river outlets studied. This investigation found polyethylene, polystyrene, and polypropylene in large proportion due to their widespread use in normal daily life and industrial applications. Our research observed an increase in microplastic fibers made of polypropylene over time. We suspect a relationship between COVID-19 PPE waste and microplastic shift in our study area. More research is needed to establish how and where microplastics enter rivers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9288859PMC
http://dx.doi.org/10.1016/j.marpolbul.2022.113926DOI Listing

Publication Analysis

Top Keywords

microplastic contamination
12
jakarta bay
8
river outlets
8
microplastic
7
seasonal heterogeneity
4
heterogeneity link
4
link precipitation
4
precipitation release
4
release microplastic
4
microplastic covid-19
4

Similar Publications

Interaction of micro and nanoplastics (MNPs) with agricultural stored products and their pests.

Sci Total Environ

January 2025

Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, China. Electronic address:

Micro and nanoplastics (MNPs) pose significant environmental concerns due to their potential implications for ecosystems and human health. While previous research has primarily focused on the environmental impacts (aquatic ecosystem, soil health) of MNPs, this review investigates their interactions with agricultural stored products, specifically their effects on stored product pests and grain quality. MNPs can infiltrate grains through various pathways, including atmospheric deposition, plastic residues from cultivation, and pest activity.

View Article and Find Full Text PDF

Relations between microplastic contamination and stress biomarkers under two seasonal conditions in wild carps, mullets and flounders.

Mar Environ Res

January 2025

ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia, (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health, and Research Team of Contaminant Pathways in Marine Environment, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal. Electronic address:

Potential effects of microplastics (MP, plastic particles <5 mm) on the levels of multiple stress biomarkers were investigated in wild fish populations of Cyprinus carpio, Mugil cephalus, Platichthys flesus captured in the Minho River estuary located in the Iberian Peninsula. Specimens were collected in March and September 2018, corresponding to the end of winter and summer, respectively. Based on the concentration of MP determined by FT-IR analysis and morphological inspection, fishes from each species were divided into two groups: ≤0.

View Article and Find Full Text PDF

Lanternfish as bioindicator of microplastics in the deep sea: A spatiotemporal analysis using museum specimens.

J Hazard Mater

January 2025

Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Av. São José do Barreto, 764, Macaé, RJ 27965-045, Brazil.

We investigated MP ingestion in lanternfishes (Myctophidae), one of the most abundant vertebrates in the world, using archived specimens from museum collections from 1999 to 2017. Microplastics were detected in 55 % of the 1167 specimens analysed (0.95 ± 1.

View Article and Find Full Text PDF

Risk assessment of potentially toxic elements, microplastics, and microorganisms in groundwater around municipal solid waste landfill.

J Hazard Mater

January 2025

Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/ School of Environment Science and Engineering, Hainan University, Haikou 570228, China. Electronic address:

Risk assessment of potential toxic elements (PTEs), microplastics (MPs) and microorganisms in groundwater around landfills is critical. Waste from landfills seeps into groundwater contaminating water quality, threatening groundwater safety, and negatively affecting the ecosystem. This study explored spatial and temporal changes in PTEs, MPs, and microorganisms in the groundwater around a closed landfill.

View Article and Find Full Text PDF

Microcontaminants (MCs) and microplastics (MPs) originating from the textile sector are today receiving a great deal of attention due to potential environmental concerns. Environmental pressures and impacts related to the textile system include not only the use of resources (, water) but also the release of a wide variety of pollutants. This review's main objective is to highlight the presence of textile MCs and MPs in water, in their full path from textile factories (from raw materials to the final product) to wastewater treatment plants (WWTPs), and finally to the receiving surface waters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!