Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Potentials of immortal proliferation and unlimited differentiation into all the three germ layers and germ cells in induced pluripotent stem cells (iPSCs) render them important bioresources for in vitro reconstitution and modeling of intravital tissues and organs in various animal models, thus contributing to the elucidation of pathomechanisms, drug discovery and stem cell-based regenerative medicine. We previously reported promising approaches for deriving transgene-free iPSCs from somatic fibroblasts of multiple mammalian species by episomal vector or RNA transfection, although the respective step-by-step protocols and the combinatorial usage of these methods, which achieved high induction efficiency, have not been described in the literature so far. Here, we provide a detailed step-by-step description of these methods with critical tips and slight modifications (improvements) to previously reported methods. We also report a novel method for the establishment of iPSCs from the Syrian hamster (also known as golden hamster; Mesocricetus auratus), a unique animal model of hibernation. We anticipate this methodology will contribute to stem cell biology and regenerative medicine research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/dgd.12798 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!