Objective: This work aims to determine the efficacy of preprocedural oral rinsing with chlorine dioxide solutions to minimize the risk of coronavirus disease 2019 (COVID-19) transmission during high-risk dental procedures.
Methods: The antiviral activity of chlorine-dioxide-based oral rinse (OR) solutions was tested by pre-incubating with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus in a dosage-dependent manner before transducing to human embryonic kidney epithelial (HEK293T-ACE2) cells, which stably expresses ACE-2 receptor. Viral entry was determined by measuring luciferase activity using a luminescence microplate reader. In the cell-to-cell fusion assay, effector Chinese hamster ovary (CHO-K1) cells co-expressing spike glycoprotein of SARS-CoV-2 and T7 RNA polymerase were pre-incubated with the ORs before co-culturing with the target CHO-K1 cells co-expressing human ACE2 receptor and luciferase gene. The luciferase signal was quantified 24 h after mixing the cells. Surface expression of SARS-CoV-2 spike glycoprotein and ACE-2 receptor was confirmed using direct fluorescent imaging and quantitative cell-ELISA. Finally, dosage-dependent cytotoxic effects of ORs were evaluated at two different time points.
Results: A dosage-dependent antiviral effect of the ORs was observed against SARS-CoV-2 cell entry and spike glycoprotein mediated cell-to-cell fusion. This demonstrates that ORs can be useful as a preprocedural step to reduce viral infectivity.
Conclusions: Chlorine-dioxide-based ORs have a potential benefit for reducing SARS-CoV-2 entry and spread.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9349900 | PMC |
http://dx.doi.org/10.1111/odi.14319 | DOI Listing |
Mol Biotechnol
January 2025
Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia.
The etiological agent for the coronavirus disease 2019 (COVID-19), the SARS-CoV-2, caused a global pandemic. Although mRNA, viral-vectored, DNA, and recombinant protein vaccine candidates were effective against the SARS-CoV-2 Wuhan strain, the emergence of SARS-CoV-2 variants of concern (VOCs) reduced the protective efficacies of these vaccines. This necessitates the need for effective and accelerated vaccine development against mutated VOCs.
View Article and Find Full Text PDFSci Rep
January 2025
Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
The ongoing emergence of SARS-CoV-2 variants, combined with antigen exposures from different waves and vaccinations, poses challenges in updating COVID-19 vaccine antigens. We collected 206 sera from individuals with vaccination-only, hybrid immunity, and single or repeated omicron post-vaccination infections (PVIs), including non-JN.1 and JN.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK.
During the COVID-19 pandemic, heterologous vaccination strategies were employed to alleviate the strain on vaccine supplies. The Thailand Ministry of Health adopted these strategies using vector, inactivated, and mRNA vaccines. However, this approach has introduced challenges for SARS-CoV-2 sero-epidemiology studies.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077, India. Electronic address:
Detection of viruses, including coronavirus (SARS-CoV-2), via facile, fast, and optical methods is highly important to control pandemics. In this regard, optically-active nanomaterials and nanoparticles (NPs) are a wise choice due to their long-term stability, ease of functionalization, and modifications. In this work, a nanocomposite based on NiFe layered double hydroxide (LDH) and ZIF-67 metal-organic framework (MOF) was designed and synthesized, and decorated on the surface of the melt-blown mask.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
Addressing the frequent emergence of SARS-CoV-2 mutant strains requires therapeutic approaches with innovative neutralization mechanisms. The targeting of multivalent nanobodies can enhance potency and reduce the risk of viral escape, positioning them as promising drug candidates. Here, the synergistic mechanisms of the two types of nanobodies are investigated deeply.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!