In vitro radiosensitization of breast cancer with hypoxia-activated prodrugs.

J Cell Mol Med

Nottingham Breast Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, UK.

Published: August 2022

KP167 is a novel hypoxia-activated prodrug (HAP), targeting cancer cells via DNA intercalating and alkylating properties. The single agent and radiosensitizing efficacy of KP167 and its parental comparator, AQ4N, were evaluated in 2D and 3D cultures of luminal and triple negative breast cancer (TNBC) cell lines and compared against DNA damage repair inhibitors. 2D normoxic treatment with the DNA repair inhibitors, Olaparib or KU-55933 caused, as expected, substantial radiosensitization (sensitiser enhancement ratio, SER of 1.60-3.42). KP167 induced greater radiosensitization in TNBC (SER 2.53 in MDAMB-231, 2.28 in MDAMB-468, 4.55 in MDAMB-436) and luminal spheroids (SER 1.46 in MCF-7 and 1.76 in T47D cells) compared with AQ4N. Significant radiosensitization was also obtained using KP167 and AQ4N in 2D normoxia. Although hypoxia induced radioresistance, radiosensitization by KP167 was still greater under 2D hypoxia, yielding SER of 1.56-2.37 compared with AQ4N SER of 1.13-1.94. Such data show KP167 as a promising single agent and potent radiosensitiser of both normoxic and hypoxic breast cancer cells, with greater efficacy in TNBCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9357624PMC
http://dx.doi.org/10.1111/jcmm.17486DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
cancer cells
8
single agent
8
repair inhibitors
8
compared aq4n
8
radiosensitization kp167
8
kp167
6
ser
5
vitro radiosensitization
4
radiosensitization breast
4

Similar Publications

Spatial profiling of tissues promises to elucidate tumor-microenvironment interactions and generate prognostic and predictive biomarkers. We analyzed single-cell, spatial data from three multiplex imaging technologies: cyclic immunofluorescence (CycIF) data we generated from 102 breast cancer patients with clinical follow-up, and publicly available imaging mass cytometry and multiplex ion-beam imaging datasets. Similar single-cell phenotyping results across imaging platforms enabled combined analysis of epithelial phenotypes to delineate prognostic subtypes among estrogen-receptor positive (ER+) patients.

View Article and Find Full Text PDF

TRAIL agonists rescue mice from radiation-induced lung, skin or esophageal injury.

J Clin Invest

January 2025

Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, United States of America.

Radiotherapy can be limited by pneumonitis which is impacted by innate immunity, including pathways regulated by TRAIL death receptor DR5. We investigated whether DR5 agonists could rescue mice from toxic effects of radiation and found two different agonists, parenteral PEGylated trimeric-TRAIL (TLY012) and oral TRAIL-Inducing Compound (TIC10/ONC201) could reduce pneumonitis, alveolar-wall thickness, and oxygen desaturation. Lung protection extended to late effects of radiation including less fibrosis at 22-weeks in TLY012-rescued survivors versus un-rescued surviving irradiated-mice.

View Article and Find Full Text PDF

The biology centered around the TGF-beta type I receptor Activin Receptor-Like Kinase (ALK)1 (encoded by ACVRL1) has been almost exclusively based on its reported endothelial expression pattern since its first functional characterization more than two decades ago. Here, in efforts to better define the therapeutic context in which to use ALK1 inhibitors, we uncover a population of tumor-associated macrophages (TAMs) that, by virtue of their unanticipated Acvrl1 expression, are effector targets for adjuvant anti-angiogenic immunotherapy in mouse models of metastatic breast cancer. The combinatorial benefit depended on ALK1-mediated modulation of the differentiation potential of bone marrow-derived granulocyte-macrophage progenitors, the release of CD14+ monocytes into circulation, and their eventual extravasation.

View Article and Find Full Text PDF

Clinical utility of tumor-infiltrating lymphocyte evaluation by two different methods in breast cancer patients treated with neoadjuvant chemotherapy.

Breast Cancer

January 2025

Division of Breast and Endocrine Surgery, Department of Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.

Purpose: The aim of this study was to examine the clinical utility of tumor-infiltrating lymphocytes (TILs) evaluated by "average" and "hot-spot" methods in breast cancer patients.

Methods: We examined 367 breast cancer patients without neoadjuvant chemotherapy (NAC) by average and hot-spot methods to determine the consistency of TIL scores between biopsy and surgical specimens. TIL scores before NAC were also compared with the pathological complete response (pCR) rate and clinical outcomes in 144 breast cancer patients that received NAC.

View Article and Find Full Text PDF

Exosome markers, CD63 and CD81, belong to the tetraspanin family and are expressed in solid tumors. It has been reported that these tetraspanin family members are prognostic factors in some cancers. However, the expression of CD63 and CD81 in pathological breast cancer specimens has not been reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!