Meta-analysis is a widely used methodology to combine evidence from different sources examining a common research phenomenon, to obtain a quantitative summary of the studied phenomenon. In the medical field, multiple studies investigate the effectiveness of new treatments and meta-analysis is largely performed to generate the summary (average) treatment effect. In the meta-analysis of aggregate continuous outcomes measured in a pretest-posttest design using differences in means as the effect measure, a plethora of methods exist: analysis of final (follow-up) scores, analysis of change scores and analysis of covariance. Specialised and general-purpose statistical software is used to apply the various methods, yet, often the choice among them depends on data availability and statistical affinity. We present a new web-based tool, MA-cont:pre/post effect size, to conduct meta-analysis of continuous data assessed pre- and post-treatment using the aforementioned approaches on aggregate data and a more flexible approach of generating and analysing pseudo individual participant data. The interactive web environment, available by R Shiny, is used to create this free-to-use statistical tool, requiring no programming skills by the users. A basic statistical understanding of the methods running in the background is a prerequisite and we encourage the users to seek advice from technical experts when necessary.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9546083PMC
http://dx.doi.org/10.1002/jrsm.1592DOI Listing

Publication Analysis

Top Keywords

ma-contpre/post size
8
meta-analysis continuous
8
continuous outcomes
8
scores analysis
8
meta-analysis
5
size interactive
4
interactive tool
4
tool meta-analysis
4
outcomes shiny
4
shiny meta-analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!