Background: Organic contaminants are released into the air from building materials/furnishings, personal care, and household products. Wearable passive samplers have emerged as tools to characterize personal chemical exposures. The optimal placement of these samplers on an individual to best capture airborne exposures has yet to be evaluated.

Objective: To compare personal exposure to airborne contaminants detected using wearable passive air samplers placed at different positions on the body.

Methods: Participants (n = 32) simultaneously wore four passive Fresh Air samplers, on their head, chest, wrist, and foot for 24 hours. Exposure to 56 airborne organic contaminants was evaluated using thermal desorption gas chromatography high resolution mass spectrometry with a targeted data analysis approach.

Results: Distinct exposure patterns were detected by samplers positioned on different parts of the body. Chest and wrist samplers were the most similar with correlations identified for 20% of chemical exposures (Spearman's Rho > 0.8, p < 0.05). In contrast, the greatest differences were found for head and foot samplers with the weakest correlations across evaluated exposures (8% compounds, Spearman's Rho > 0.8, p < 0.05).

Significance: The placement of wearable passive air samplers influences the exposures captured and should be considered in future exposure and epidemiological studies.

Impact Statement: Traditional approaches for assessing personal exposure to airborne contaminants with active samplers presents challenges due to their cost, size, and weight. Wearable passive samplers have recently emerged as a non-invasive, lower cost tool for measuring environmental exposures. While these samplers can be worn on different parts of the body, their position can influence the type of exposure that is captured. This study comprehensively evaluates the exposure to airborne chemical contaminants measured at different passive sampler positions worn on the head, chest, wrist, and foot. Findings provide guidance on sampler placement based on chemicals and emission sources of interest.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41370-022-00456-3DOI Listing

Publication Analysis

Top Keywords

chemical exposures
12
organic contaminants
8
wearable passive
8
exposure airborne
8
air samplers
8
chest wrist
8
samplers
6
characterizing external
4
external exposome
4
passive
4

Similar Publications

Objective: To assess factors influencing Neonatal Respiratory Distress Syndrome (RDS) risk, incorporating maternal demographics, behaviors, medical conditions, pregnancy-related factors, and PM2.5 speciation pollutants exposures.

Methods: Using Florida de-identified birth records, logistic regression analyses were conducted to assess associations between maternal exposure to PM2.

View Article and Find Full Text PDF

Background: Therapeutic monitoring is routinely performed to ensure tacrolimus whole-blood concentrations fall within a predefined target. Despite this, patients still experience inefficacy and toxicity that could be related to variability in free (unbound) tacrolimus exposure. Therefore, the aim of this study was to compare tacrolimus-free plasma (C u ), total plasma (C p ), and whole-blood (C wb ) concentrations in adult kidney transplant recipients and to characterize tacrolimus disposition across different matrices.

View Article and Find Full Text PDF

Purpose: Sulfur mustard gas (SM) exposure to eyes causes multiple corneal injuries including stromal cell loss in vivo. However, mechanisms mediating stromal cell loss/death remains elusive. This study sought to test the novel hypothesis that SM-induced toxicity to human corneal stromal fibroblasts involves ferroptosis mechanism via p38 MAPK signaling.

View Article and Find Full Text PDF

Background: Chemotherapy drugs may lead to hepatic injury, which is considered one of the limitations of these drugs.

Objectives: The aim of this study was to evaluate the effect of quercetin (QUE) on M1/M2 macrophage polarization and hepatoprotective effect in cyclophosphamide (CTX)-induced liver toxicity.

Methods: Twenty-four mice were divided into four groups (Control, QUE, CTX, CTX + QUE).

View Article and Find Full Text PDF

What Impact Does Net Zero Action on Road Transport and Building Heating Have on Exposure to UK Air Pollution?

Environ Sci Technol

January 2025

Environmental Research Group, School of Public Health, Imperial College London, Sir Michael Uren Biomedical Engineering Hub, White City Campus, 80 Wood Lane, London W12 0BZ, United Kingdom.

This study explores the cobenefits of reduced nitrogen dioxide (NO), ozone (O), and particulate matter (PM), through net zero (NZ) climate policy in the UK. Two alternative NZ scenarios, the balanced net zero (BNZP) and widespread innovation (WI) pathways, from the UK Climate Change Committee's Sixth Carbon Budget, were examined using a chemical transport model (CTM). Under the UK existing policy, Business as Usual (BAU), reductions in NO and PM were predicted by 2030 due to new vehicle technologies but plateau by 2040.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!