A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Discovery of toxoflavin, a potent IRE1α inhibitor acting through structure-dependent oxidative inhibition. | LitMetric

AI Article Synopsis

  • * TXF showed strong inhibitory effects on IRE1α's RNase activity, with a low concentration needed to inhibit its function, and its mechanism involves the production of reactive oxygen species (ROS) that oxidize specific cysteine residues in IRE1α.
  • * The study suggests that TXF binds to a new site on IRE1α and may serve as a tool for further research on IRE1α's role in ER stress, improving our understanding of cancer treatment

Article Abstract

Inositol-requiring enzyme 1α (IRE1α) is the most conserved endoplasmic reticulum (ER) stress sensor with two catalytic domains, kinase and RNase, in its cytosolic portion. IRE1α inhibitors have been used to improve existing clinical treatments against various cancers. In this study we identified toxoflavin (TXF) as a new-type potent small molecule IRE1α inhibitor. We used luciferase reporter systems to screen compounds that inhibited the IRE1α-XBP1s signaling pathway. As a result, TXF was found to be the most potent IRE1α RNase inhibitor with an IC value of 0.226 μM. Its inhibitory potencies on IRE1α kinase and RNase were confirmed in a series of cellular and in vitro biochemical assays. Kinetic analysis showed that TXF caused time- and reducing reagent-dependent irreversible inhibition on IRE1α, implying that ROS might participate in the inhibition process. ROS scavengers decreased the inhibition of IRE1α by TXF, confirming that ROS mediated the inhibition process. Mass spectrometry analysis revealed that the thiol groups of four conserved cysteine residues (CYS-605, CYS-630, CYS-715 and CYS-951) in IRE1α were oxidized to sulfonic groups by ROS. In molecular docking experiments we affirmed the binding of TXF with IRE1α, and predicted its binding site, suggesting that the structure of TXF itself participates in the inhibition of IRE1α. Interestingly, CYS-951 was just near the docked site. In addition, the RNase IC and ROS production in vitro induced by TXF and its derivatives were negative correlated (r = -0.872). In conclusion, this study discovers a new type of IRE1α inhibitor that targets a predicted new alternative site located in the junction between RNase domain and kinase domain, and oxidizes conserved cysteine residues of IRE1α active sites to inhibit IRE1α. TXF could be used as a small molecule tool to study IRE1α's role in ER stress.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41401-022-00949-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9812974PMC

Publication Analysis

Top Keywords

ire1α
14
ire1α inhibitor
12
inhibition ire1α
12
potent ire1α
8
kinase rnase
8
txf
8
small molecule
8
inhibition process
8
ire1α txf
8
conserved cysteine
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!