Free-energy transduction in chemical reaction networks: From enzymes to metabolism.

J Chem Phys

Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, 162a, Avenue de la Faïencerie, 1511 Luxembourg, G. D. Luxembourg.

Published: July 2022

AI Article Synopsis

Article Abstract

We provide a rigorous definition of free-energy transduction and its efficiency in arbitrary-linear or nonlinear-open chemical reaction networks (CRNs) operating at a steady state. Our method is based on the knowledge of the stoichiometric matrix and the chemostatted species (i.e., the species maintained at a constant concentration by the environment) to identify the fundamental currents and forces contributing to the entropy production. Transduction occurs when the current of a stoichiometrically balanced process is driven against its spontaneous direction (set by its force), thanks to other processes flowing along their spontaneous direction. In these regimes, open CRNs operate as thermodynamic machines. After exemplifying these general ideas using toy models, we analyze central energy metabolism. We relate the fundamental currents to metabolic pathways and discuss the efficiency with which they can transduce free energy.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0091035DOI Listing

Publication Analysis

Top Keywords

free-energy transduction
8
chemical reaction
8
reaction networks
8
fundamental currents
8
spontaneous direction
8
transduction chemical
4
networks enzymes
4
enzymes metabolism
4
metabolism provide
4
provide rigorous
4

Similar Publications

The src-homology 2 domain-containing phosphatase 2 (SHP2) is a human cytoplasmic protein tyrosine phosphatase that plays a crucial role in cellular signal transduction. Aberrant activation and mutations of SHP2 are associated with tumor growth and immune suppression, thus making it a potential target for cancer therapy. Initially, researchers sought to develop inhibitors targeting SHP2's catalytic site (protein tyrosine phosphatase domain, PTP).

View Article and Find Full Text PDF
Article Synopsis
  • The transmembrane potential is crucial for cellular functions like signaling and energy production, with Rhodamine voltage reporters (RhoVRs) serving as small, non-invasive sensors that can detect voltage changes, especially in mitochondria.
  • Extensive simulations and free-energy calculations revealed that the orientation of RhoVRs relative to membranes, influenced by their polarized functional groups, significantly impacts their voltage sensitivity and localization within cells.
  • The study's findings on the relationship between the chemical structure of RhoVRs and their membrane behavior offer valuable insights for designing fluorescent dyes that better detect voltage changes.
View Article and Find Full Text PDF

Investigation of serotonin-receptor interactions, stability and signal transduction pathways via molecular dynamics simulations.

Biophys Chem

December 2024

Department of Chemistry and Center for Atomic, Molecular, Optical Sciences and Technologies (CAMOST), Indian Institute of Science, Education and Research (IISER) Tirupati, Yerpedu Mandal, Tirupati 517619, India. Electronic address:

Serotonin-receptor binding plays a key role in several neurological and biological processes, including mood, sleep, hunger, cognition, learning, and memory. In this article, we performed molecular dynamics simulation to examine the key residues that play an essential role in the binding of serotonin to the G-protein-coupled 5-HT receptor (5HTR) via electrostatic interactions. Key residues for electrostatic interactions were identified via bond distance analysis and frustration analysis methods.

View Article and Find Full Text PDF

Prostate cancer is a widespread health issue that affects men worldwide. It is one of the most common forms of cancer, and its development is influenced by a combination of hereditary, epigenetic, environmental, age, and lifestyle factors. Given that it is the second most common cause of cancer-related deaths in men, it is crucial to comprehend its complex facets.

View Article and Find Full Text PDF

Obesity, characterized by abnormal or excessive fat accumulation, has become a chronic degenerative health condition that poses significant threats to overall well-being. Pharmacological intervention stands at the forefront of strategies to combat this issue. Recent studies, notably by Umut Ozcan's team, have uncovered the remarkable potential of Celastrol, a small-molecule compound derived from the traditional Chinese herb thunder god vine (Tripterygium wilfordii) as an anti-obesity agent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!