Ketamine triggers rapid antidepressant effects by modulating synaptic plasticity in a new depressive-like mouse model based on astrocyte glutamate transporter GLT-1 knockdown in infralimbic cortex.

Rev Psiquiatr Salud Ment (Engl Ed)

Department of Neuroscience and Experimental Therapeutics, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, Barcelona, Spain; Systems Neuropharmacology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain. Electronic address:

Published: July 2022

Objective: Recently, we reported on a new MDD-like mouse model based on a regionally selective knockdown of astroglial glutamate transporters, GLAST/GLT-1, in infralimbic cortex (IL) which evokes widespread changes in mouse brain associated with the typical alterations found in MDD patients. To further characterize this new MDD-like mouse model, here we examine some transcriptional elements of glutamatergic/GABAergic neurotransmission and neuroplasticity in forebrain regions in the GLT-1 knockdown mice. Furthermore, we assess the acute ketamine effects on these transcriptional processes.

Material And Methods: We used a small interfering RNA (siRNA) pool targeting GLT-1 mRNA to disrupt the GLT-1 transcription in mouse IL. Histological assays were performed to examine postsynaptic density protein-95 (PSD95), neuritin (NRN), glutamine acid descarboxilase-65 (GAD65), and GLT-1 mRNA expression in IL and hippocampus.

Results: Knockdown of GLT-1 in mouse IL leads to decreased expression of PSD95 and NRN neuroplasticity mRNAs in IL and hippocampus, which was reversed by an acute dose of ketamine antidepressant. Likewise, a single dose of ketamine also increased the mRNA levels of GAD65 and GLT-1 in IL of GLT-1 knockdown mice, reaching the basal values of control mice.

Conclusions: The glutamatergic neuronal hyperactivity and deficits in the GABA system resulting from siRNA-induced astroglial glutamate transporter knockdown in IL can compromise the integrity/plasticity of neurocircuits affected in MDD. Suitable depressive-like animal models to address the neurobiological changes in MDD are an unmet need and the development of the GLAST/GLT-1 knockdown mouse model may represent a better option to understand the rapid-acting antidepressant effects of ketamine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rpsmen.2022.06.008DOI Listing

Publication Analysis

Top Keywords

mouse model
16
glt-1 knockdown
12
antidepressant effects
8
model based
8
glutamate transporter
8
glt-1
8
infralimbic cortex
8
mdd-like mouse
8
astroglial glutamate
8
knockdown mice
8

Similar Publications

Introduction/objectives: Sjogren's syndrome (SS) is a chronic inflammatory and difficult-to-treat autoimmune disease. Timosaponin AIII (TAIII), a plant-derived steroidal saponin, effectively inhibits cell proliferation, induces apoptosis, and exhibits anti-inflammatory properties. This study explored the mechanisms of action of TAIII in SS treatment by studying gut microbiota and short-chain fatty acids (SCFAs) using fecal metabolomics.

View Article and Find Full Text PDF

Modulation of Intestinal Inflammation and Protection of Dopaminergic Neurons in Parkinson's Disease Mice through a Probiotic Formulation Targeting NLRP3 Inflammasome.

J Neuroimmune Pharmacol

January 2025

Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, PR China.

Emerging evidence highlights the significance of peripheral inflammation in the pathogenesis of Parkinson's disease (PD) and suggests the gut as a viable therapeutic target. This study aimed to explore the neuroprotective effects of the probiotic formulation VSL#3 and its underlying mechanism in a PD mouse model induced by MPTP. Following MPTP administration, the striatal levels of dopamine and its metabolites, as along with the survival rate of dopaminergic neurons in the substantia nigra, were significantly reduced in PD mice.

View Article and Find Full Text PDF

This study aimed to identify shared gene expression related to circadian rhythm disruption in polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD) to discover common diagnostic biomarkers. Visceral fat RNA samples were collected from 12 PCOS and 14 non-PCOS patients, a sample size representing the clinical situation and sufficient to capture PCOS gene expression profiles. Along with liver transcriptome profiles from NAFLD patients, these data were analyzed to identify crosstalk circadian rhythm-related genes (CRRGs) between the diseases.

View Article and Find Full Text PDF

Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.

View Article and Find Full Text PDF

Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!