Microbial degradation of organic compounds is an environmentally benign and energy efficient part in product processing. Fermentation of plant leaves involves enzymatic actions of many microorganisms. However, microbes and enzymes discovered from natural degradation communities were still limited by cultural methods. In this study, we used a metagenomics sequence-guided strategy to identify the microbes and enzymes involved in compound degradation and explore the potential synergy among community members in fermented tobacco leaves. The results showed that contents of protein, starch, pectin, lignin, and cellulose varied in fermented leaves from different growing sites. The different compound contents were closely related to taxonomic composition and functional profiles of foliar microbial communities. Microbial communities showed significant correlations with protein, lignin, and cellulose. Vital species for degradations of protein (Bacillus cereus and Terribacillus aidingensis), lignin (Klebsiella pneumoniae and Pantoea ananatis) and cellulose (Pseudomonas putida and Sphingomonas sp. Leaf20) were identified and relating hydrolytic enzymes were annotated. Further, twenty-two metagenome-assembled genomes (MAGs) were assembled from metagenomes and six potential cellulolytic genomes were used to reconstruct the cellulose-degrading process, revealing the potential metabolic cooperation related to cellulose degradation. Our work should deepen the understanding of microbial roles in plant fermentation and provide a new viewpoint for applying microbial consortia to convert plant organic components to small molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2022.113902DOI Listing

Publication Analysis

Top Keywords

microbial degradation
8
degradation organic
8
organic compounds
8
plant leaves
8
microbes enzymes
8
lignin cellulose
8
microbial communities
8
microbial
6
degradation
5
metagenomic insight
4

Similar Publications

Rare constituents of the nasal microbiome contribute to the acute exacerbation of chronic rhinosinusitis.

Inflamm Res

January 2025

Department of Otolaryngology, Peking University Third Hospital, Haidian District, No. 49 Huayuan North Road, Beijing, 100191, People's Republic of China.

Background: Dysbiosis of the nasal microbiome is considered to be related to the acute exacerbation of chronic rhinosinusitis (AECRS). The microbiota in the nasal cavity of AECRS patients and its association with disease severity has rarely been studied. This study aimed to characterize nasal dysbiosis in a prospective cohort of patients with AECRS.

View Article and Find Full Text PDF

The pathway to resolve dimeric forms distinguishes plasmids from megaplasmids in Enterobacteriaceae.

Nucleic Acids Res

January 2025

Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 165 Rue Marianne Grunberg-Manago, campus Paul Sabatier, 118, route de Narbonne, 31062, Toulouse Cedex, France.

Bacterial genomes contain a plethora of secondary replicons of divergent size. Circular replicons must carry a system for resolving dimeric forms, resulting from recombination between sister copies. These systems use site-specific recombinases.

View Article and Find Full Text PDF

Patients with hyperlipidemia are of interest because of the possible interplay between chronic local dental infections and hyperlipidemia. This interventional clinical study aimed to evaluate the oral health status of hyperlipidemic patients receiving lipid-lowering therapy for at least 6 months and the effects of non-surgical and surgical dental treatments on serum C-reactive protein (CRP) levels and lipid markers. Twenty-eight patients with controlled hyperlipidemia and 18 healthy controls were enrolled in the study.

View Article and Find Full Text PDF

Dietary Influences on Gut Microbiota and Their Role in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD).

Nutrients

December 2024

Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major contributor to liver-related morbidity, cardiovascular disease, and metabolic complications. Lifestyle interventions, including diet and exercise, are first line in treating MASLD. Dietary approaches such as the low-glycemic-index Mediterranean diet, the ketogenic diet, intermittent fasting, and high fiber diets have demonstrated potential in addressing the metabolic dysfunction underlying this condition.

View Article and Find Full Text PDF

Background: The relationship between gut microbiota composition, lifestyles, and colonic transit time (CTT) remains poorly understood. This study investigated associations among gut microbiota profiles, diet, lifestyles, and CTT in individuals with subjective constipation.

Methods: We conducted a secondary analysis of data from our randomized clinical trial, examining gut microbiota composition, CTT, and dietary intake in baseline and final assessments of 94 participants with subjective constipation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!