The resistance of microorganisms against commonly used antibiotics is becoming an increasingly important problem in the food and pharmaceutical industries. Therefore, the development of novel bactericidal agents, as well as the design of drug delivery systems based on materials composed of biocompatible and biodegradable building blocks, has attracted increasing attention. To address this challenge, microparticles composed of l-lactide homopolymer and l-lactide/1,3-dioxolane (co)polymers loaded with quercetin (Q) were fabricated by using a microfluidic technique. This method enables the preparation of homogeneous particles with sizes ranging from 60 to 80 µm, composed of degradable semicrystalline or amorphous (co)polyesters. The microencapsulation of Q in a (co)polymeric matrix enables prolonged release of the antimicrobial agent. The antibacterial properties of the obtained biocompatible microparticles are confirmed by the agar diffusion plate method for various bacterial strains. Therefore, Q-loaded microparticles can have important applications in food preservation as a novel antimicrobial system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2022.133639DOI Listing

Publication Analysis

Top Keywords

microparticles composed
8
l-lactide/13-dioxolane copolymers
8
copolymers loaded
8
loaded quercetin
8
microfluidic preparation
4
preparation antimicrobial
4
microparticles
4
antimicrobial microparticles
4
composed
4
composed l-lactide/13-dioxolane
4

Similar Publications

Respiratory tract infections (RTIs) represent a significant global health issue, particularly for vulnerable population, such as children, the elderly, or patients with immunosuppression. In this context, the aim of the present work was the development of Chitosan/Hydrolyzed Collagen-based microparticles (Mps) as a pulmonary drug delivery system (PDDS) for the treatment of RTIs. Mps were produced via spray-drying and composed of chitosan (Cs), one of the most widely used polysaccharides in PDDS, and hydrolyzed collagen (HC), another promising material for the development of PDDS that has not yet been fully explored.

View Article and Find Full Text PDF

Background: The identification of drugs targeting multiple pathways is essential for comprehensive protection against cerebral ischemia-reperfusion injury.

Research Design And Methods: This study aimed to develop RS31, a multi-target cytoprotectant composed of SS31 (an oxidative stress mitigator) and rapamycin (Rapa), contributes anti-inflammatory and blood-brain barrier protection. RS31 was synthesized using click chemistry, and its ability to scavenge reactive oxygen species (ROS) and reduce inflammation was tested in HO-injured PC12 cells and LPS-stimulated BV2 cells.

View Article and Find Full Text PDF

Inhalation of macrophage membrane-coated hydrogel microparticles for inflammation alleviation of acute lung injury in vivo.

Acta Biomater

December 2024

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China; Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312035, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China. Electronic address:

Hydrogel microparticles (HMPs) have many advantages for biomedical applications, particularly for minimally invasive therapy, for example, acute lung injury (ALI) that is characterized by high levels of reactive oxygen species (ROS) and pro-inflammatory mediators in the microenvironment. In this study, ROS-scavenging and pro-inflammatory cytokine-neutralizing HMPs were designed and prepared by using a membrane emulsification device. The HMPs were composed of double bond-modified hyaluronic acid and ROS-cleavable hyperbranched poly(acrylate-capped thioketone-containing ethylene glycol) (HBPAK) containing thioketal linkages and unsaturated double bonds.

View Article and Find Full Text PDF

Engineering pH and Temperature-Triggered Drug Release with Metal-Organic Frameworks and Fatty Acids.

Molecules

November 2024

Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA.

This study reports the successful synthesis of core-shell microparticles utilizing coaxial electrospray techniques, with zeolitic imidazolate framework-8 (ZIF-8) encapsulating rhodamine B (RhB) in the core and a phase change material (PCM) shell composed of a eutectic mixture of lauric acid (LA) and stearic acid (SA). ZIF-8 is well-recognized for its pH-responsive degradation and biocompatibility, making it an ideal candidate for targeted drug delivery. The LA-SA PCM mixture, with a melting point near physiological temperature (39 °C), enables temperature-triggered drug release, enhancing therapeutic precision.

View Article and Find Full Text PDF

Direct ink writing (DIW) enables 3D printing of macroscopic objects with well-defined structures and compositions that controllably change over length scales of order 100 µm. Unfortunately, only a limited number of materials can be processed through DIW because it imparts stringent rheological requirements on inks. This limitation can be overcome for soft materials, if they are formulated as microparticles that, if jammed, fulfill the rheological requirements to be printed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!