Impact of Sr and hypoxia on 3D triple cultures of primary human osteoblasts, osteocytes and osteoclasts.

Eur J Cell Biol

Centre for Translational Bone, Joint, and Soft Tissue Research, Technische Universität Dresden, Faculty of Medicine and University Hospital, 01307 Dresden, Germany. Electronic address:

Published: August 2022

An in vitro bone triple culture involving human primary osteoblasts, osteocytes and osteoclasts enables the investigation of bone healing factors, drugs or biomaterials in a model system for native bone tissue. The present study analyses the impact of Sr as well as hypoxic cultivation (5% O content or chemically induced by Co) on bone cells. The three cell types were cultivated together in the presence of 100 µM Sr, hypoxic conditions or in the presence of 75 µM Co. After cultivation the cell types were separated and analysed on mRNA and protein level individually. In response to Sr osteoblasts showed a downregulation of IBSP expression and a stimulation of ALP activity. Osteocyte gene marker expression of PDPN, MEPE, RANKL, OPG, osteocalcin and likewise the amount of secreted osteocalcin was reduced in the presence of Sr. Activity of osteoclast-specific enzymes TRAP and CAII was enhanced compared to the Sr free control. Hypoxic conditions induced by both 5% O or a Co treatment led to decreased DNA content of all bone cells and downregulated expression of osteoblast markers ALPL and IBSP as well as osteocyte markers PDPN, RANKL and OPG. In addition, Co induced hypoxia decreased gene and protein expression of osteocalcin in osteocytes. In response to the Co treatment, the TRAP gene expression and activity was increased. This study is the first to analyse the effects of Sr or hypoxia on triple cultures with primary human bone cells. The investigated in vitro bone model might be suitable to reduce animal experiments in early stages of biomaterial and drug development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejcb.2022.151256DOI Listing

Publication Analysis

Top Keywords

bone cells
12
hypoxia triple
8
triple cultures
8
cultures primary
8
primary human
8
osteoblasts osteocytes
8
osteocytes osteoclasts
8
vitro bone
8
cell types
8
hypoxic conditions
8

Similar Publications

Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.

View Article and Find Full Text PDF

ISCT MSC committee statement on the US FDA approval of allogenic bone-marrow mesenchymal stromal cells.

Cytotherapy

January 2025

Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, Division of Hematology, University of Toronto, Toronto, Ontario, Canada. Electronic address:

The December 2024 US Food and Drug Administration (FDA) approval of Mesoblast's Ryoncil (remestemcel-L-rknd)-allogeneic bone marrow mesenchymal stromal cell (MSC(M)) therapy-in pediatric acute steroid-refractory graft-versus-host-disease finally ended a long-lasting drought on approved MSC clinical products in the United States. While other jurisdictions-including Europe, Japan, India, and South Korea-have marketed autologous or allogeneic MSC products, the United States has lagged in its approval. The sponsor's significant efforts and investments, working closely with the FDA addressing concerns regarding clinical efficacy and consistent MSC potency through an iterative process that spanned several years, was rewarded with this landmark approval.

View Article and Find Full Text PDF

Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.

View Article and Find Full Text PDF

Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.

View Article and Find Full Text PDF

The accessibility of CAR-T cells in centralized production models faces significant challenges, primarily stemming from logistical complexities and prohibitive costs. However, European Regulation EC No. 1394/2007 introduced a pivotal provision known as the hospital exemption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!