A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pt+ncs&datetype=edat&usehistory=y&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanozyme-mediated cascade reaction system for electrochemical detection of 1,5-anhydroglucitol. | LitMetric

Nanozyme-mediated cascade reaction system for electrochemical detection of 1,5-anhydroglucitol.

Bioelectrochemistry

School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China; Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, Guangxi 537000, People's Republic of China. Electronic address:

Published: October 2022

Diabetes is one of metabolic diseases affecting major human health. The early diagnosis and treatment of diabetes have significant benefits. 1,5-anhydroglucitol (1,5-AG) accurately reflects a patient's average blood glucose level for the past 3-7 days and becomes a promising marker for real-time detection of diabetes. In this study, a novel biosensor for determination 1,5-AG is constructed using reduce graphene oxide-carboxymethylated chitosan-hemin@platinum nanocomposites (rGO-CMC-H@Pt NCs) nanozyme and pyranose oxidase (PROD) enzyme as the electrochemical biosensing platform. The rGO-CMC-H@Pt NCs nanozyme has good electro-conductibility, high specific surface area, and admirable peroxide-like catalysis effect to enhance the electrochemical response. 1,5-AG is catalyzed by PROD and produces hydrogen peroxide (HO), which in turn can be decomposed by rGO-CMC-H@Pt NCs and produce a current signal recorded by differential pulse voltammetry (DPV) technique. Under optimal conditions, the response currents have a linear relationship in the 1,5-AG concentration of 0.1-2.0 mg/mL with R of 0.9869. The sensitivity is 2.1895 μA/μg·mL and the limit of detection (LOD) is 38.2 μg/mL (S/N = 3). In addition, the specificity, reproducibility, stability and recovery (94.5-107.6%) of 1,5-AG biosensors all exhibit good performance. Therefore, the designed 1,5-AG biosensor has a good effect and can be used for the diagnosis of diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2022.108204DOI Listing

Publication Analysis

Top Keywords

rgo-cmc-h@pt ncs
12
ncs nanozyme
8
15-ag
6
nanozyme-mediated cascade
4
cascade reaction
4
reaction system
4
system electrochemical
4
electrochemical detection
4
detection 15-anhydroglucitol
4
diabetes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!