Severity: Warning
Message: file_get_contents(https://...@pt+ncs&datetype=edat&usehistory=y&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Diabetes is one of metabolic diseases affecting major human health. The early diagnosis and treatment of diabetes have significant benefits. 1,5-anhydroglucitol (1,5-AG) accurately reflects a patient's average blood glucose level for the past 3-7 days and becomes a promising marker for real-time detection of diabetes. In this study, a novel biosensor for determination 1,5-AG is constructed using reduce graphene oxide-carboxymethylated chitosan-hemin@platinum nanocomposites (rGO-CMC-H@Pt NCs) nanozyme and pyranose oxidase (PROD) enzyme as the electrochemical biosensing platform. The rGO-CMC-H@Pt NCs nanozyme has good electro-conductibility, high specific surface area, and admirable peroxide-like catalysis effect to enhance the electrochemical response. 1,5-AG is catalyzed by PROD and produces hydrogen peroxide (HO), which in turn can be decomposed by rGO-CMC-H@Pt NCs and produce a current signal recorded by differential pulse voltammetry (DPV) technique. Under optimal conditions, the response currents have a linear relationship in the 1,5-AG concentration of 0.1-2.0 mg/mL with R of 0.9869. The sensitivity is 2.1895 μA/μg·mL and the limit of detection (LOD) is 38.2 μg/mL (S/N = 3). In addition, the specificity, reproducibility, stability and recovery (94.5-107.6%) of 1,5-AG biosensors all exhibit good performance. Therefore, the designed 1,5-AG biosensor has a good effect and can be used for the diagnosis of diabetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioelechem.2022.108204 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!