A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Highly stable cathodes for proton exchange membrane fuel cells: Novel carbon supported Au@PtNiAu concave octahedral core-shell nanocatalyst. | LitMetric

Highly stable cathodes for proton exchange membrane fuel cells: Novel carbon supported Au@PtNiAu concave octahedral core-shell nanocatalyst.

J Colloid Interface Sci

Collaborative Innovation Center of Sustainable Energy Materials, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, School of Physical Science and Technology, Guangxi University, Nanning 530004, PR China. Electronic address:

Published: November 2022

Despite the remarkable research efforts, the lack of ideal activity and state-of-the-art electrocatalysts remains a substantial challenge for the global application of fuel cell technology. Herein, is reported the synthesis of Au@PtNiAu concave octahedral core-shell nanocatalysts (Au@PtNiAu-COCS) via solvothermal synthesis modification and optimization approach. The special structure generating a large number of step atoms, enhancing the oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) activity and stability. The superior ORR mass activity of the Au@PtNiAu-COCS is 11.22 times than the exhibited of Pt/C initially by Pt loading, and 5.11 times by Pt + Au loading. After 30 k cycles the mass activity remains 78.8% (8.83 times the initial Pt/C activity) and the half-wave potential only shifts 12 mV. Au@PtNiAu-COCS has superior half-cell activity and gives ideal membrane electrode assemblies. Furthermore, for MOR the Au@PtNiAu-COCS show enhanced anti-toxic (tolerant) ability in CO. This work provides a new strategy to develop core-shell structure nanomaterials for electrocatalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2022.06.115DOI Listing

Publication Analysis

Top Keywords

au@ptniau concave
8
concave octahedral
8
octahedral core-shell
8
mass activity
8
activity
6
highly stable
4
stable cathodes
4
cathodes proton
4
proton exchange
4
exchange membrane
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!