Can digestate recirculation promote biohythane production from two-stage co-digestion of rice straw and pig manure?

J Environ Manage

Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China. Electronic address:

Published: October 2022

Digestate recirculation is often considered an important way to improve system stability (system acidification, ammonia inhibition, hydrolysis limitations, etc.) and gas production performance. However, it is not clear how the promotion of biohythane production works in anaerobic co-digestion with digestate recirculation of rice straw (RS) and pig manure (PM). Two sets of laboratory-scale two-stage continuous stirred tank reactors were operated continuously for 95 d to investigate the performance of biohythane production in the first/second phase under mesophilic (M)/thermophilic (T) and digestate recirculation conditions. Firstly, biohythane was not produced by PM with RS under digestate recirculation. The main reasons were: 1) Digestive recirculation promoted the growth of hydrogenotrophic methanogenic bacteria; and 2) limitations in hydrolysis. Secondly, digestate recirculation has positive effects on the removal rates (removal rates of TS, VS, polysaccharide, protein and TCOD increased by 30.4%, 22.3%, 9.9%, 31.4%, and 11.9%, respectively) and energy yield (up to 68.7%). Finally, there was a higher abundance of hydrogen-producing bacteria (Fervidobacterium [44.9%] and Coprothermobacter [18.8%]) in T2, accounting for >80% of the total, and of which the huge hydrogen production potential cannot be ignored. The results provide new ideas for alleviating the energy crisis and developing green energy in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2022.115655DOI Listing

Publication Analysis

Top Keywords

digestate recirculation
24
biohythane production
12
rice straw
8
straw pig
8
removal rates
8
digestate
6
recirculation
6
production
5
recirculation promote
4
biohythane
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!